Journal of Fluid Mechanics

Cavitation phenomena within regions of flow separation

Joseph  Katz a1p1
a1 California Institute of Technology, Pasadena, California 91125

Article author query
katz j   [Google Scholar] 


The phenomenon of cavitation inception was studied on four axisymmetric bodies whose boundary layers underwent a laminar separation and subsequent turbulent reattachment. The non-cavitating flow was studied by holographic and schlieren flow-visualization techniques. Surface distributions on the mean and the fluctuating pressures were also measured. The conditions for cavitation inception and desinence were determined and holograms were recorded just prior to and at the onset of cavitation. The population of microbubbles and the subsequent development of visible cavitation was determined from the reconstructed image. In every case the appearance of visible cavitation was preceded by a cluster of microscopic bubbles in a small portion of the flow field providing clear evidence that cavitation is initiated from small nuclei. The inception zone was located within the turbulent shear layer downstream of transition and upstream of the reattachment region of the bodies with large separation regions. The location and the shape of this cavitation suggested a relation to the mixing-layer eddy structure. The inception region on the body with the smallest separation zone, a hemisphere-cylinder body, was located in the reattachment region, but the cavities were still detached from the surface. Instantaneous minimum-surface-pressure measurements do not account for observed cavitation-inception indices except for the hemisphere body, where the correlation is satisfactory. The rate of cavitation events was estimated from measurements of nuclei population, and fluctuating-pressure statistics in the portion of the flow susceptable to cavitation. It was demonstrated for the hemisphere body that at least one such cavitation event could occur every second. These findings are consistent with what is observed visually at the onset of cavitation and support the location of inception determined holographically.

(Published Online April 20 2006)
(Received March 14 1983)
(Revised November 14 1983)

p1 Present address: School of Civil Engineering, Purdue University, West Lafayette, Indiana.

Related Content