Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-19T09:41:45.959Z Has data issue: false hasContentIssue false

Turbulence structure in stably stratified open-channel flow

Published online by Cambridge University Press:  20 April 2006

Satoru Komori
Affiliation:
Division of Atmospheric Environment, The National Institute for Environmental Studies, Ibaraki 305, Japan
Hiromasa Ueda
Affiliation:
Division of Atmospheric Environment, The National Institute for Environmental Studies, Ibaraki 305, Japan
Fumimaru Ogino
Affiliation:
Department of Chemical Engineering, Kyoto University, Kyoto 606, Japan
Tokuro Mizushina
Affiliation:
Department of Chemical Engineering, Kyoto University, Kyoto 606, Japan

Abstract

The effects of stable stratification on turbulence structure have been experimentally investigated in stratified open-channel flow and a theoretical spectral-equation model has been applied to the stably stratified flow. The measurements were made in the outer layer of open-channel flow with strongly stable density gradient, where the wall effect was small. Velocity and temperature fluctuations were simultaneously measured by a laser-Doppler velocimeter and a cold-film probe. Measurements include turbulent intensities, correlation coefficients of turbulent fluxes and coherence–phase relationships. These turbulent quantities were correlated with the local gradient Richardson number and compared with the values calculated using a spectral-equation model and with other laboratory measurements. In stable conditions, turbulent motions approach wavelike motions, and negative heat and momentum transfer against the mean temperature and velocity gradient occurs in strongly stable stratification.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arya, S. P. S. 1975 J. Fluid Mech. 68, 321.
Arya, S. P. S. & Plate, E. J. 1969 J. Atmos. Sci. 26, 656.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
Deissler, R. G. 1958 Phys. Fluids 1, 111.
Deissler, R. G. 1967 NASA TN D-3999, 1.
Deissler, R. G. 1971 Z. angew. Math. Phys. 22, 267.
Ellison, T. H. & Turner, J. S. 1960 J. Fluid Mech. 8, 514.
Gibson, M. M. 1962 Nature 195, 1281.
Gibson, M. M. & Launder, B. E. 1978 J. Fluid Mech. 86, 491.
Haugen, D. A., Kaimal, J. C. & Bradley, E. F. 1971 Q. J. R. Met. Soc. 97, 168.
Komori, S. 1980 Ph.D. dissertation., Kyoto University.
Komori, S., Ueda, H., Ogino, F. & Mizushina, T. 1982a In Heat Transfer 1982, vol. 2, p. 431. Hemisphere.
Komori, S., Ueda, H., Ogino, F. & Mizushina, T. 1982b Phys. Fluids 25, 1359.
Launder, B. E. 1975 J. Fluid Mech. 67, 569.
Mcbean, G. A. & Miyake, M. 1972 Q. J. R. Met. Soc. 98, 383.
Mizushina, T., Ogino, F., Ueda, H. & Komori, S. 1978 In Heat Transfer 1978, vol. 1, p. 91. Hemisphere.
Mizushina, T., Ogino, F., Ueda, H. & Komori, S. 1979 Proc. R. Soc. Lond. A366, 63.
Piat, J. F. & Hopfinger, E. J. 1981 J. Fluid Mech. 113, 411.
Schiller, E. J. & Sayre, W. W. 1975 J. Hydraul. Div. A.S.C.E. 101 (HY 6), 749.
Ueda, H., Mitsumoto, S. & Komori, S. 1981 Q. J. R. Met. Soc. 107, 561.
Webster, C. A. G. 1964 J. Fluid Mech. 19, 221.
Wyngaard, J. C., Cote, O. R. & Izumi, Y. 1971 J. Atmos. Sci. 28, 1171.
Young, S. T. B. 1975 Queen Mary Coll., London, Rep. QMC-EP6018.