Journal of Fluid Mechanics

Double-diffusive convection in an inclined fluid layer

Sivagnanam  Thangam a1p1, Abdelfattah  Zebib a1 and C. F.  Chen a1p2
a1 Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ 08903, U.S.A.

Article author query
thangam s   [Google Scholar] 
zebib a   [Google Scholar] 
chen cf   [Google Scholar] 


The nonlinear double-diffusive convection in a Boussinesq fluid with stable constant vertical solute gradient, and bound by two differentially heated rigid inclined parallel plates is considered. The analysis was carried out by a Galerkin method for the cases when the angle of inclination was 0°, −45° and +45° (positive angle denotes heating from below, and negative angle denotes heating from above). The counter-rotating cells predicted by the linear theory merge into single cells with the same sense of rotation within a very short period of time even under slightly supercritical conditions. This is consistent with the experimental observations. Furthermore, as observed in the experiments, the evolution of instability is more rapid when heating is from above than when heating is from below. Our results for a salt-heat system are in excellent agreement with those based on the limiting case of Lewis number [rightward arrow] 0 and Schmidt number [rightward arrow] [infty infinity].

(Received July 30 1980)
(Revised July 14 1981)

p1 Present address: Stevens Institute of Technology, Hoboken, NJ 07030, U.S.A.
p2 Present address: The University of Arizona, Tucson, Arizona 85721, U.S.A.

Related Content