Mathematical Proceedings of the Cambridge Philosophical Society

Research Article

Multi-symplectic structures and wave propagation

a1 Department of Mathematical and Computing Sciences, University of Surrey, Guildford, GU2 5XH


A Hamiltonian structure is presented, which generalizes classical Hamiltonian structure, by assigning a distinct symplectic operator for each unbounded space direction and time, of a Hamiltonian evolution equation on one or more space dimensions. This generalization, called multi-symplectic structures, is shown to be natural for dispersive wave propagation problems. Application of the abstract properties of the multi-symplectic structures framework leads to a new variational principle for space-time periodic states reminiscent of the variational principle for invariant tori, a geometric reformulation of the concepts of action and action flux, a rigorous proof of the instability criterion predicted by the Whitham modulation equations, a new symplectic decomposition of the Noether theory, generalization of the concept of reversibility to space-time and a proof of Lighthill's geometric criterion for instability of periodic waves travelling in one space dimension. The nonlinear Schrödinger equation and the water-wave problem are characterized as Hamiltonian systems on a multi-symplectic structure for example. Further ramifications of the generalized symplectic structure of theoretical and practical interest are also discussed.

(Received June 2 1994)
(Revised April 3 1995)