Journal of Fluid Mechanics



Analysis of the stability of axisymmetric jets


G. K.  Batchelor a1 and A. E.  Gill a1
a1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Article author query
batchelor gk   [Google Scholar] 
gill ae   [Google Scholar] 
 

Abstract

This paper is a contribution to the mathematical analysis of the stability of steady axisymmetric parallel flows of uniform fluid in the absence of rigid boundaries. A jet at sufficiently high Reynolds number for the angle of viscous spreding to be small is the typical example of the primary flows considered, and the theoretical velocity profile far downstream in such a jet is kept in mind continually. It is obvious from experience that such jets are unstable, presumably to infinitesimal disturbances, but there is little observational data about the critical Reynolds number or the mode of disturbance that grows most rapidly at a given Reynolds number.

The typical small disturbance considered is a Fourier component with sinusoidal dependence on both ax and nφ (x, r, φ are cylindrical polar co-ordinates). There is no analogue of Squire's theorem for two-dimensional primary flows, and both α and n are essential parameters of the disturbance. We have concentrated on the stability characteristics in the limit of large Reynolds number, and have aimed in particular at determining the (integral) value of n at which the growth rate is a maximum in these simpler circumstances.

A number of general results for inviscid fluid are established, many of them analogues of corresponding results for two-dimensional primary flow. A necessary condition for the existence of amplified disturbances is that $Q(r)=rU^{\prime}|(n^2+\alpha ^2 r^2)$ should have a numerical maximum a t some point in the fluid; this condition is satisfied for all n in the case of a cylindrical shear layer or ‘top-hat’ jet profile (for which a complete solution of the disturbance equation can be obtained), and for n > 1 in the case of a ‘far-downstream’ jet profile. The wave speed cr of a neutral disturbance is equal to the value of U either a t the point where dQ/dr = 0 or at r = 0. In the latter case the eigen-function (if one exists) is singular at the axis in general; the former case is presumably relevant to the ‘upper branch’ of the curve of neutral stability (for given n). The Reynolds stress due to the disturbance acting across a cylindrical surface is examined. Here, as in some other contexts, it is useful to consider components of velocity parallel and perpendicular to a circular helix on which the phase of the disturbance wave is constant. For a neutral disturbance the component of disturbance velocity parallel to the local wave helix is infinite a t the critical point where U = cr, (corresponding to the known singularity for a three-dimensional disturbance to two-dimensional flow), and there is a peak in the Reynolds stress there.

It is shown from the form of the disturbance equation that there is an upper limit to the value of n ([not equal] 0) for a neutral (inviscid) disturbance with cr equal to the value of U at the point where Q′ = 0. In the case of a jet with a ‘far-downstream’ profile, only the value n = 1 satisfies this restriction; thus only the sinuous mode n = 1 can yield amplified disturbances in an inviscid fluid. A numerical investigation shows that for this profile the wave-number of the neutral disturbance with n = 1 is α = 1·46.

(Published Online March 28 2006)
(Received July 15 1962)



Metrics
Related Content