Journal of Fluid Mechanics



The disintegration of wave trains on deep water Part 1. Theory


T. Brooke  Benjamin a1 and J. E.  Feir a1 1
a1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Article author query
benjamin tb   [Google Scholar] 
feir je   [Google Scholar] 
 

Abstract

The phenomenon in question arises when a periodic progressive wave train with fundamental frequency ω is formed on deep water—say by radiation from an oscillating paddle—and there are also present residual wave motions at adjacent side-band frequencies ω(1 ± δ), such as would be generated if the movement of the paddle suffered a slight modulation at low frequency. In consequence of coupling through the non-linear boundary conditions at the free surface, energy is then transferred from the primary motion to the side bands at a rate that, as will be shown herein, can increase exponentially as the interaction proceeds. The result is that the wave train becomes highly irregular far from its origin, even when the departures from periodicity are scarcely detectable at the start.

In this paper a theoretical investigation is made into the stability of periodic wave trains to small disturbances in the form of a pair of side-band modes, and Part 2 which will follow is an account of some experimental observations in accord with the present predictions. The main conclusion of the theory is that infinitesimal disturbances of the type considered will undergo unbounded magnification if \[ 0 < \delta \leqslant (\sqrt{2})ka, \] where k and a are the fundamental wave-number and amplitude of the perturbed wave train. The asymptotic rate of growth is a maximum for δ = ka.

(Published Online March 28 2006)
(Received June 21 1966)



Footnotes

1 On leave from the Division of Mechanical Engineering, National Research Council, Ottawa, Canada.



Metrics