Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T23:56:29.328Z Has data issue: false hasContentIssue false

High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI

Published online by Cambridge University Press:  05 December 2005

G. SCHAUMANN
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany
M.S. SCHOLLMEIER
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany
G. RODRIGUEZ-PRIETO
Affiliation:
GSI, Darmstadt, Germany
A. BLAZEVIC
Affiliation:
GSI, Darmstadt, Germany
E. BRAMBRINK
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany Current address: Ecole Polytechnique, Paris
M. GEISSEL
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany Current address: Sandia National Laboratories, Albuquerque, New Mexico.
S. KOROSTIY
Affiliation:
GSI, Darmstadt, Germany
P. PIRZADEH
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany
M. ROTH
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany
F.B. ROSMEJ
Affiliation:
Université de Provence et CNRS, Marseille, France
A.YA. FAENOV
Affiliation:
Multicharged Ions Spectra Data Center, VNIIFTRI, Moscow, Russia
T.A. PIKUZ
Affiliation:
Multicharged Ions Spectra Data Center, VNIIFTRI, Moscow, Russia
K. TSIGUTKIN
Affiliation:
Weizmann Institute of Science, Rehovot, Israel
Y. MARON
Affiliation:
Weizmann Institute of Science, Rehovot, Israel
N.A. TAHIR
Affiliation:
GSI, Darmstadt, Germany
D.H.H. HOFFMANN
Affiliation:
Technische Universität Darmstadt, Darmstadt, Germany GSI, Darmstadt, Germany

Abstract

High energy heavy ions were generated in laser produced plasma at moderate laser energy, with a large focal spot size of 0.5 mm diameter. The laser beam was provided by the 10 GW GSI-NHELIX laser systems, and the ions were observed spectroscopically in status nascendi with high spatial and spectral resolution. Due to the focal geometry, plasma jet was formed, containing high energy heavy ions. The velocity distribution was measured via an observation of Doppler shifted characteristic transition lines. The observed energy of up to 3 MeV of F-ions deviates by an order of magnitude from the well-known Gitomer (Gitomer et al., 1986) scaling, and agrees with the higher energies of relativistic self focusing.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexeev, N.N., Alekseev, P.N., Balanutsa, V.N., Bereznitsky, S.L., Evtichovich, V.N., Gorjachev, J.M., Kirillov, A., Koshkarev, D.G., Mescherekov, N.D., Miluachenko, A.V., Nikitin, G.A., Nikolaev, V.I., Okorokov, I.S., Sharkov, B.Y., Schegolev, V.A., Sosnin, D.V., Shumshurov, A., Veselov, M.A., Zavodov, V.P., Zavrazhnov, V.S., Zenkevich, P.R., Zhuravlev, A.S., Mamaev, G.L., Krasnopolsky, V.A., Krylov, S.J., Puchkov, S.N. & Tenjakov, I.E. (2002). Status of the Terawatt Accumulator Accelerator project. Laser Part. Beams 20, 385391.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Balakirev, V.A., Karas, I.V., Karas, V.I., Levchenko, V.D. & Bonatici, M. (2004). Charged particle acceleration by an intense wake-field excited in plasmas by either laser pulse or relativistic electron bunch. Laser Part. Beams 22, 383392.Google Scholar
Chabot, M., Nectoux, M., Gardes, D., Maynard, G. & Deutsch, C. (1998). Charge state dependence of the stopping power for chlorine ions interacting with a cold gas and a plasma (1.5 MeV/u). Nucl. Instr. Meth. Phys. Res. 415, 571575.Google Scholar
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy-ions in a hydrogen plasma. Phys. Rev. Lett. 69, 36233626.Google Scholar
Ehler, A.W. (1975). High-energy ions form CO2 laser-produced plasma. J. Appl. Phys. 45, 24642467.Google Scholar
Faenov, A.Y., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M. & Shelkovenko, T.A. (1994). High-performance x-ray spectroscopic devices for plasma microsources investigations. Phys. Scripta 50, 333338.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.Google Scholar
Gabriel, A.H. (1972). Dielectronic satellite spectra for highly-charged helium-like ion lines. Royal Astronomical Soc. 160, 99.Google Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F. & Kristal, R. (1986). Fast ions and hot-electrons in the laser-plasma interaction. Phys. Fluids 29, 26792688.Google Scholar
Glenzer, S.H. (2000). Thomson scattering in inertial confinement fusion research. Contrib. Plasma Phys. 40, 3645.Google Scholar
Glenzer, S.H., Gregori, G., Lee, R.W., Rogers, F.J., Pollaine, S.W. & Landen, O.L. (2003). Demonstration of spectrally resolved X-ray scattering in dense plasmas. Phys. Rev. Lett. 90 (17).Google Scholar
Glenzer, S.H., Gregori, G., Rogers, F.J., Froula, D.H., Pollaine, S.W., Wallace, R.S. & Landen, O.L. (2003). X-ray scattering from solid density plasmas. Phys. Plasmas 10, 24332441.Google Scholar
Golubev, A., Basko, M., Fertman, A., Kozodaev, A., Mesheryakov, N., Sharkov, B., Vishnevskiy, A., Fortov, V., Kulish, M., Gryaznov, V., Mintsev, V., Golubev, E., Pukhov, A., Smirnov, V., Funk, U., Stoewe, S., Stetter, M., Flierl, H.P., Hoffmann, D.H.H., Jacoby, J. & Iosilevski, I. (1998). Dense plasma diagnostics by fast proton beams. Phys. Rev. E 57, 33633367.Google Scholar
Gregori, G., Glenzer, S.H., Rogers, F.J., Pollaine, S.M., Landen, O.L., Blancard, C., Faussurier, G., Renaudin, P., Kuhlbrodt, S. & Redmer, R. (2004). Electronic structure measurements of dense plasmas. Phys. Plasmas 11, 27542762.Google Scholar
Hasegawa, J., Yokoya, N., Kobayashi, Y., Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beams 21, 711.Google Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hoffmann, D.H.H., Bock, R., Faenov, A.Y., Funk, U., Geissel, M., Neuner, U., Pikuz, T.A., Rosmej, F., Roth, M., Suss, W., Tahir, N. & Tauschwitz, A. (2000). Plasma physics with intense laser and ion beams. Nuc. Instr. Meth. Phys. Res. 161, 918.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Muller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stockl, C., Wetzler, H. & Miyamoto, S. (1995). Stopping of heavy-ions in a hydrogen plasma. Phys. Rev. Lett. 74, 15501553.Google Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research programme. Laser Part. Beams 23, 177182.Google Scholar
Khaydarov, R.T., Berdiyorov, G.R., Kunishev, U., Khalmuratov, M., Tojikhonov, M.E. & Kanapathipillai, M. (2005). Investigation of PbMg target characteristics by a laser mass-spectrometer. Laser Part. Beams 23, 521526.Google Scholar
Kojima, M., Mitomo, M., Sasaki, T., Hasegawa, J. & Ogawa, M. (2002). Charge-state distribution and energy loss of 3.2-MeV oxygen ions in laser plasma produced from solid hydrogen. Laser Part. Beams 20, 475478.Google Scholar
Koshkarev, D.G. (2002). Heavy ion driver for fast ignition. Laser Part. Beams 20, 595598.Google Scholar
Magunov, A.I., Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Y. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399406.Google Scholar
Maynard, G., Deutsch, C., Gardes, D. & Chabot, M. (2002). Energy loss of MeV/n heavy ions in dense hydrogen plasmas. Plasma Sour. Sci. Techn. 11, A131A137.Google Scholar
Mintsev, V., Gryaznov, V., Kulish, M., Filimonov, A., Fortov, V., Sharkov, B., Golubev, A., Fertman, A., Turtikov, V., Vishnevskiy, A., Kozodaev, A., Hoffmann, D.H.H., Funk, U., Stoewe, S., Geisel, M., Jacoby, J., Gardes, D. & Chabot, M. (1999). Stopping power of proton beam in a weakly nonideal xenon plasma. Contr. Plasma Phys. 39, 4548.Google Scholar
Neumayer, P., Seelig, W., Cassou, K., Klisnick, A., Ros, D., Ursescu, D., Kuehl, T., Borneis, S., Gaul, E., Geithner, W., Haefner, C. & Wiewior, P. (2004). Transient collisionally excited X-ray laser in nickel-like zirconium pumped with the PHELIX laser facility. Appl. Phys. B-Lasers Opt. 78, 957959.Google Scholar
Neumayer, P., Bock, R., Borneis, S., Brambrink, E., Brand, H., Caird, J., Campbell, E.M., Gaul, E., Goette, S., Haefner, C., Hahn, T., Heuck, H.M., Hoffmann, D.H.H., Javorkova, D., Kluge, H.-J., Kuehl, Th., Kunzer, S., Merz, T., Onkels, E., Perry, M.D., Reemts, D., Roth, M., Samek, S., Schaumann, G., Schrader, F., Seelig, W., Tauschwitz, A., Thiel, R., Ursescu, D., Wiewior, P., Wittrock, U. & Zielbauer, B. (2005). Status of PHELIX Laser and First Experiments. Laser Part. Beams 23, 385389.Google Scholar
Ogawa, M., Yoshida, M., Nakamija, M., Hasegawa, J., Fukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on low-power laser. Laser Part. Beams 21, 633640.Google Scholar
Osman, F., Hora, H., Cang, Y., Evans, P., Cao, H., Liu, H., He, X.T., Badziak, J., Parys, A.B., Wolowski, J., Woryna, E., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self focusing for high gain laser fusion. Laser Part. Beams 22, 8388.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirekepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their application. Laser Part. Beams 22, 1924.Google Scholar
Penache, D., Niemann, C., Tauschwitz, A., Knobloch, R., Neff, S., Birkner, R., Geissel, M., Hoffmann, D.H.H., Presura, R., Penache, C., Roth, M. & Wahl, H. (2002). Experimental investigation of ion beam transport in laser initiated plasma channels. Laser Part. Beams 20, 559563.Google Scholar
Rafique, M.S., Rahman, M.K., Anwar, M.S., Ashfad, F.M.A. & Siraj, K. (2006). Angular distribution and forward peaking of laser produced plasma ions. Laser Part. Beams 24. In press.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Suess, W., Geissel, M., Pirzadeh, P., Roth, M., Seelig, W., Faenov, A.Ya, Skobelev, I.Yu, Magunov, A.I, Pikuz, T.A, Bock, R., Funk, U.N., Neuner, U., Udrea, S., Tauschwitz, A., Tahir, N.A., Sharkov, B.Yu. & Andreev, N.E. (1999). Observation of MeV ions in long-pulse, large-scale laser-produced plasmas. JETP Lett. 70, 270276.Google Scholar
Rosmej, F.B., Renner, O., Krousky, E., Wieser, J., Schollmeier, M., Krasa, J., Laska, L., Kralikova, B., Skala, J., Bodnar, M., Rosmej, O.N. & Hoffmann, D.H.H. (2002a). Space-resolved analysis of highly charged radiating target ions generated by kilojoule laser beams. Laser Part. Beams 20, 555557.Google Scholar
Rosmej, F.B., Hoffmann, D.H.H., Suss, W., Stepanov, A.E., Satov, Y.A., Smakovskii, Y.B., Roerich, V.K., Khomenko, S.V., Makarov, K.N., Starostin, A.N., Faenov, A.Y., Skobelev, I.Y., Magunov, A.I., Geissel, M., Pirzadeh, P., Seelig, W., Pikuz, T.A., Bock, R., Letardi, T., Flora, F., Bollanti, S., Di Lazzaro, P., Reale, A., Scafati, A., Tomassetti, G., Auguste, T., d'Oliveira, P., Hulin, S., Monot, P. & Sharkov, B.Y. (2002b). The generation of fast particles in plasmas created by laser pulses with different wavelengths. J. Exp. Theo. Phys. 94, 6072.Google Scholar
Rosmej, O.N., Wieser, J., Geissel, M., Rosmej, F., Blakevic, A., Jacoby, J., Dewald, E., Roth, M., Brambrinz, E., Weyrich, K., Hoffmann, D.H.H., Pikuz, T.A., Faenov, A.Y., Magunov, A.I., Skobelev, I.Y., Borisenko, N.G., Shevelko, V.P., Golubev, A.A., Fertman, A., Turtikov, V. & Sharkov, B.Y. (2002). X-ray spectromicroscopy of fast heavy ions and target radiation. Nucl. Instr. Meth. Phys. 495, 2939.Google Scholar
Roth, M., Stockl, C., Suss, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 2834.Google Scholar
Sharkov, B.Yu. (2002). Guest editors Preface: 14th international heavy ion inertial fusion symposium, and references therein. Laser Part. Beams 20, 367.Google Scholar
Shorokhov, O. & Pukhov, A. (2004). Ion acceleration in overdense plasma by short pulse laser. Laser Part. Beams 22, 175182.Google Scholar
Stepanov, A.E., Volkov, G.S., Zaitsev, V.I., Makarov, K.N., Satov, Yu.A. & Roerich, V.C. (2002). Measurement of temperature evolution for the laser ion source plasma. Laser Part. Beams 20, 613.Google Scholar
Varentsov, D., Tahir, N.A., Lomonosov, I.V., Hoffmann, D.H.H., Wieser, J. & Fortov, V.E. (2003). Energy loss dynamics of an intense uranium beam interacting with solid neon for equation-of-state studies. Europhys. Lett. 64, 5763.Google Scholar
Wilks, S.C. (2005). Energetic proton generation in ultra-intense laser solid interaction and target normal aheath acceleration. Laser Part. Beams 23(4).Google Scholar
Young, B.K.F., Wilson, B.G., Price, D.F. & Stewart, R.E. (1998). Measurement of X-ray emission and thermal transport in near-solid-density plasmas heated by 130 fs laser pulses. Phys. Rev. E 58, 49294936.Google Scholar
Zhidkov, A.G., Sasaki, A., Tajima, T., Auguste, T., D'Oliveira, P., Hulin, S., Monot, P., Faenov, A.Ya., Pikuz, T.A. & Skobelev, I.Yu. (1999). Direct spectroscopic observation of multiple charged ion acceleration by intense femtosecond pulse laser. Phys. Rev. E. 60, 3273.Google Scholar