Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T17:36:06.464Z Has data issue: false hasContentIssue false

Application of laser driven fast high density plasma blocks for ion implantation

Published online by Cambridge University Press:  05 December 2005

AMIR H. SARI
Affiliation:
Plasma Physics Research Center, Islamic Azad University, Tehran, Iran
F. OSMAN
Affiliation:
SQMMS, University of Western Sydney, Penrith, Australia
K.R. DOOLAN
Affiliation:
SQMMS, University of Western Sydney, Penrith, Australia
M. GHORANNEVISS
Affiliation:
Plasma Physics Research Center, Islamic Azad University, Tehran, Iran
H. HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
R. HÖPFL
Affiliation:
University of Applied Sciences, Deggendorf, Germany
G. BENSTETTER
Affiliation:
University of Applied Sciences, Deggendorf, Germany
M.H. HANTEHZADEH
Affiliation:
Plasma Physics Research Center, Islamic Azad University, Tehran, Iran

Abstract

The measurement of very narrow high density plasma blocks of high ion energy from targets irradiated with ps-TW laser pulses based on a new skin depth interaction process is an ideal tool for application of ion implantation in materials, especially of silicon, GaAs, or conducting polymers, for micro-electronics as well as for low cost solar cells. A further application is for ion sources in accelerators with most specifications of many orders of magnitudes advances against classical ion sources. We report on near band gap generation of defects by implantation of ions as measured by optical absorption spectra. A further connection is given for studying the particle beam transforming of n-type semiconductors into p-type and vice versa as known from sub-threshold particle beams. The advantage consists in the use of avoiding aggressive or rare chemical materials when using the beam techniques for industrial applications.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, D. (2003). Plasma formation through field ionization intense laser-matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Badziak, J., Kozlov, A.A., Makowski, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigations of ion streams emitted from plasma produced with high-power picosecond laser. Laser Part. Beams 17, 323329.Google Scholar
Badziak, J., Glowacz, S.G., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2004a). Production of ultrahigh-current-density ion beams by short-pulse skin-layer laser-plasma interaction. Appl. Phys. Lett. 85, 30423047.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Paris, P., Wolowski, J., Kraska, J., Laska, L., Rohlena, K. & Hora, H. (2004b). Production of ultrahigh ion current densities at Akin-Layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.Google Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Balmer, J.A. (1971). Self-focusing of laser beams in plasmas. Phys. Fluids 14, 27142721.Google Scholar
Benstetter, G., Ghoranneviss, M., Hantezadeh, M.R., Höpfl, R., Hora, H., Sari, A. & Salalouni, S. (2002). Microelectronics by Particle Irradiation 2002. German Patent Disclosure DE 102, 06, 581.0.
Bilek, M.M.M. (2001). Effect of sheath evolution on metal ion implantation in a vacuum arc plasma source. J. Appl. Phys. 89, 923927.Google Scholar
Boody, F.P., Höpfl, R., Hora, H. & Kelly, J.C. (1996). Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14, 443448.Google Scholar
Chen, F.F. (1974). Physical mechanisms for laser-plasma parametric instabilities. In Laser Interaction and Related Plasma Phenomen (Schwarz, H. & Hora, H., Eds.). New York: Plenum Press.
Deutsch, C. (2004). Penetration of intense charge particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Doria, D., Lorusso, A., Belloni, F., Nassisi, V., Torrisi, L. & Gammino, S. (2004). A study of the parameters of particles ejected from a laser plasma. Laser Part. Beam 22, 461467.Google Scholar
Ehler, A.W. (1975). High-energy ions from CO2 laser-produced plasma. J. Appl. Phys. 46, 24642467.Google Scholar
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F. & Kristal R. (1986). Fast ions and hot electrons in the laser–plasma interaction. Phys. Fluids 29, 26792688.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Yu. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beam 23, in press.Google Scholar
Goldsmid, H.J., Hora, H. & Paul, G.L. (1984). Anomalous heat conduction of ion-implanted amorphous layers in silicon crystals using a laser-probe technique. Phys. Stat. Solidi 81, K127K130.Google Scholar
Haseroth, H. & Hora, H. (1996). Physical problems of the ion generation in laser driven ion sources. Laser Part. Beams 14, 395438.Google Scholar
Hinckley, S., Hora, H., Kane, E.L., Kelly, J.C., Kentwell, G., Lalousis, P., Lawrence, V.F., Mavaddat, R., Novak, M.M., Ray, P.S., Schwartz, A. & Ward, H.A. (1980). On irreversible effects at intensive irradiation. Experim. Techn. Phys. 28, 417434.Google Scholar
Hinckley, S., Hora, H. & Kelly, J.S. (1979). Subthreshold defect generation and annealing in silicon by intense electron beam bombardment. Phys. Stat. Solidi 51, 419428.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (1961). Shift of absorption of evaporated silicon layers by bombardment with 75 keV. Naturwissenschaften 48, 641642.Google Scholar
Hora, H. (1962). Change of silicon by intensive bombardment with 50 kev electrons. Zeitschrift f. Angew. Phys. 14, 912.Google Scholar
Hora, H. (1969a). Self-focusing of laser beams in a plasma by ponderomotive forces. Zeitschrift d. Phys. 226, 156159.Google Scholar
Hora, H. (1969b). Nonlinear confining and deconfining forces associated with the interaction of laser radiation with plasma. Phys. Fluids 12, 182191.Google Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (1976). Production of a barrier photo cell. German Pat. 2415399 (granted after patent court case 1977).
Hora, H. (1983). Stresses in silicon crystals from ion-implanted amorphous regions. Appl. Phys. A32, 15.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II. Czech. J. Phys. 53, 199217.Google Scholar
Hora, H. & Aydin, M. (1999). Increased gain for ICF with red light at suppression of stochastic pulsation by smoothing. Laser Part. Beams 17, 209215.Google Scholar
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods. Phys. Rev. A45, 61236126.Google Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikowa, B., Kraska, J., Laska, L., Parys, P., Perina, V., Pfeifer, K. & Rohlena, J. (2002a). Effects of ps and ns laser pulses for giant ion source. Optics Commun. 207, 333338.Google Scholar
Hora, H., Pfirsch, D. & Schlüter, A. (1967). Acceleration of inhomogeneous plasma by laser light. Zeitsch. Naturforsch. 22A, 278280.Google Scholar
Hora, H., Osman, F., Höpfl, R., Badziak, J., Parys, P., Skala, J., Ullschmied, J., Wolowski, J., Woryna, E. Boody, F., Jungwirth, K., Kralikowà, B., Kraska, J., Laska, L., Pfeifer, M., Rohlena, K., Skala, J., &Ullschmied, J. (2002b). Skin depth theory explaining anomalous picosecond laser plasma interaction. Czech. J. Phys. 52, D349D361.Google Scholar
Jablonski, S., Hora, H., Glowacz, S., Badziak, J., Cang, Yu. & Osman, F. (2005). Two-fluid computations of plasma bock dynamics for numerical analyze of rippling effect. Laser Part. Beams 23, 433439.Google Scholar
Kreutz, E.V. (1976). X-Radiation effect in bulk silicon at subthreshold energies. Phys. Stat. Solidi 34a, 489495.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157162.Google Scholar
Osman, F, Cang, Y., Hora, H., Cao, L.H., Liu, H., Badziak, J., Parys, A.B., Wolowski, J., Worya, E., Jungwirth, K., Kralikova, B., Kraska, J., Laska, M., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004a). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser Part. Beams 22, 8387.Google Scholar
Osman, F., Beech, R. & Hora, H. (2004b). Solutions of the nonlinear paraxial equation due to laser-plasma interactions. Laser Part. Beams 22, 6974.Google Scholar
Palmer, A.D. (1971). Stimulated scattering and self-focusing in laser-produced plasmas. Phys. Fluids 14, 27142718.Google Scholar
Purchi, G., Pandey, H.D. & Sharma, R.P. (2003). Effect of cross focusing of two laser beams on the growth of laser ripple in plasma. Laser Part. Beams 21, 567572.Google Scholar
Ramirez, J., Ramis, R. & Sanz, J. (2004). One-dimensional model for a laser-ablated slab under acceleration. Laser Part. Beams 22, 183188.Google Scholar
Richardson, M.C. & Alcock, A.J. (1971). Interferometric observation of plasma filaments in a laser-produced spark. Appl. Phys. Lett. 18, 357360.Google Scholar
Saini, M.S. & Gill, T.S. (2004). Enhanced raman scattering of a rippled laser beam in a magnetized collisional plasma. Laser Part. Beams 22, 3540.Google Scholar
Sari, A.H., Osman, F., Ghoranneviss, M., Hora, H., Höpfl, R. & Hantehzadeh, M.R. (2004). The effect of electron bombardment on optical properties of n-type silicon, Appl. Surf. Sci. 237, 161164.Google Scholar
Sharkov, B.Yu. & Hora, H. (1996). Preface, Special Issue on the Laser Ion Source. Laser Part. Beams 14, 275277.Google Scholar
Shearer, J.W. & Eddleman, J.L. (1973). Laser light forces and self-focusing in fully ionized plasmas. Phys. Fluid 16, 17531761.Google Scholar
Shockley, W. (1976). Electrons and Holes in Semiconductors. New York: Van Nostrand.
Siller, G., Büchl, K. & Hora, H. (1972). Intense electron emission from laser produced plasmas. In Laser Interaction and Related Plasma Phenomoena (Schwarz, H. & Hora, H., Eds.). New York: Plenum Press.
Thomas, O. (2004). Planning for the accelerator after LHC. Phys. J. 3, 1415.Google Scholar
Vavilov, V.S., Kiv, A.E. & Niyazova, O.R. (1975). The subthreshold radiation effects in semiconductors. Phys. Stat. Soldi 32a, 1133.Google Scholar
Weibel, E. (1957). Confining electrons in the nodes of standing microwaves. J. Electron. Contr. 5, 435446.Google Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hackett, S., Key, M.H., Penningotn, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interaction. Phys. Plasmas 8, 542549.Google Scholar
Woryna, E., Wolowski, J., Kralikova, B., Kraska, J., Laska, M., Pfeifer, M., Rohlena, K., Skala, J., Perina, V., Boody, F.B., Höpfl, R. & Hora, H. (2000). Laser produced Ag ions for direct implantation. Rev. Sci, Instr. 71, 949951.Google Scholar
Zaikovskaya, M.A., Kiv, A.E., Niyazova, L.A.P. (1970). Subthreshold irradiation effects in silicon epitaxial films. Phys. Stat. Solidi 3a, 99104.Google Scholar
Zheng, L.R., Hung, L.S. & Mayer, J.W. (1989). Coevaporation and ion implantation of Pd50Ti50 and Pt50Ti50 on AISI stainless steels for reducing wear and friction. J. Appl. Phys. 65, 300304.Google Scholar