Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T05:19:28.576Z Has data issue: false hasContentIssue false

Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion

Published online by Cambridge University Press:  26 April 2006

Eugene J. Chang
Affiliation:
Center for Fluid Mechanics, Turbulence and Computation, Brown University, Box 1966, Providence, RI 02912, USA Present Address: Naval Research Laboratory, Code 6410, Washington, DC 20375, USA
Martin R. Maxey
Affiliation:
Center for Fluid Mechanics, Turbulence and Computation, Brown University, Box 1966, Providence, RI 02912, USA

Abstract

A direct numerical simulation, based on spectral methods, has been used to compute the time-dependent, axisymmetric viscous flow past a rigid sphere. An investigation has been made for oscillatory flow about a zero mean for different Reynolds numbers and frequencies. The simulation has been verified for steady flow conditions, and for unsteady flow there is excellent agreement with Stokes flow theory at very low Reynolds numbers. At moderate Reynolds numbers, around 20, there is good general agreement with available experimental data for oscillatory motion. Under steady flow conditions no separation occurs at Reynolds number below 20; however in an oscillatory flow a separation bubble forms on the decelerating portion of each cycle at Reynolds numbers well below this. As the flow accelerates again the bubble detaches and decays, while the formation of a new bubble is inhibited till the flow again decelerates. Steady streaming, observed for high frequencies, is also observed at low frequencies due to the flow separation. The contribution of the pressure to the resultant force on the sphere includes a component that is well described by the usual added-mass term even when there is separation. In a companion paper the flow characteristics for constant acceleration or deceleration are reported.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auton, T. R., Hunt, J. C. R. & Prudhomme, M. 1988 The force exerted on a body in inviscid steady non-uniform rotational flow, J. Fluid Mech. 197, 241257.Google Scholar
Bassett, A. B. 1888 A Treatise in Hydrodynamics, Vol. II. Deighton, Bell, and Co.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics Cambridge University Press.
Bentwich, M. & Miloh, T. 1978 The unsteady matched Stokes-Oseen solution for the flow past a sphere. J. Fluid Mech. 88, 1732.Google Scholar
Brabston, D. C. & Keller, H. B. 1975 Viscous flows past spherical gas Bubbles, J. Fluid Mech. 69, part 1, 179189.Google Scholar
Chang, E. 1992 Accelerated motion of rigid spheres in unsteady flow at low to moderate Reynolds numbers, PhD thesis, Brown University.
Chang, E. J. & Maxey, M. R. 1994 Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion. J. Fluid Mech. (submitted).Google Scholar
Chester, W. & Breach, D. R. 1969 On the flow past a sphere at low Reynolds number. J. Fluid Mech. 37, 751760.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic.
Dennis, S. C. R. & Walker, J. D. A. 1971 Calculation of the steady flow past a sphere at low and moderate Reynolds numbers. J. Fluid Mech. 48, 771789.Google Scholar
Dennis, S. C. R. & Walker, J. D. A. 1972 Numerical solutions for time-dependent flow past an impulsively started sphere. Phys. Fluids 15, 517525.Google Scholar
Drummond, C. K. & Lyman, F. A. 1990 Mass transfer from a sphere in an oscillating flow with zero mean velocity. Comput. Mech. 6, 315326.Google Scholar
Fornberg, B. 1988 Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190, 471489.Google Scholar
Goldstein, S. 1929 The forces on a solid body moving through viscous fluid. Proc. R. Soc. Lond. A 123, 216235.Google Scholar
Homann, F. 1936 The effect of high viscosity on the flow around a cylinder and around a sphere. NACA. Tech Mem. 1334.Google Scholar
Keulegan, G. H. & Carpenter, L. H. 1958 Forces on cylinders and plates in an oscillating fluid. J. Res. Nat. Bur. Stand. 60, 423440.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Kim, I. & Pearlstein, A. J. 1990 Stability of flow past a sphere. J. Fluid Mech. 211, 7393.Google Scholar
Lane, C. A. 1955 Acoustical streaming in the vicinity of a sphere. J. Acoust. Soc. Am. 27, 10821086.Google Scholar
Lapple, C. E. 1951 Particle dynamics. Eng. Res. Lab., Eng. Dept., E.I. du Pont de Nemours and Co., Inc., Wilmington, Delaware.
Le Clair, B. P., Hamielec, A. E. & Pruppracher, H. R. 1970 A numerical study of the drag on a sphere at low and intermediate Reynolds numbers, J. Atmos. Sci. 27, 308315.Google Scholar
Lin, C. L. & Lee, S. C. 1973 Transient state analysis of separated flow around a sphere, Compu. Fluids 1, 235250.Google Scholar
Marcus, P. S. & Tuckerman, L. S. 1987 Simulation of flow between concentric rotating spheres. Part 1. Steady states J. Fluid Mech. 185, 130.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 863889.Google Scholar
Mei, R. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.Google Scholar
Mei, R., Lawrence, C. J. & Adrian, R. J. 1991 Drag on a sphere with fluctuations in the free stream velocity. J. Fluid Mech. 233, 613631.Google Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.Google Scholar
Odar, F. 1964 Forces on a sphere accelerating in a viscous fluid. US Army Cold Regions Research and Engineering Laboratory, Research Rep. 128.
Odar, F. 1966 Verification of the proposed equation for calculation of the forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 25, 591592.Google Scholar
Odar, F. & Hamilton, W. S. 1963 Forces on a sphere accelerating in a viscous fluid. J. Fluid Mech. 18, 302314.Google Scholar
Oliver, D. L. R. & Chung, J. N. 1985 Flow about a fluid sphere at low to moderate Reynolds numbers. J. Fluid Mech. 177, 118.Google Scholar
Orszag, S. A. 1974 Fourier series on spheres. Mon. Weath. Rev. 102, 5675.Google Scholar
Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.Google Scholar
Riley, N. 1966 On a sphere oscillating in a viscous fluid. Q. J. Mech. Appl. Maths 19, 461472.Google Scholar
Rimon, Y. & Cheng, S. I. 1969 Numerical solution of a uniform flow over a sphere at intermediate Reynolds number. Phys. Fluids 12, 949959.Google Scholar
Rivero, M. 1991 Etude par simulation numerérique des forces exercées sur une inclusion sphérique par un écoulement accéléré, Thése de Doctorat, I.N.P.T.
Rivero, M., Magnaudet, J. & Fabre, J. 1991 Quelques Résultants nouveaux concernant les forces exercées sur une inclusion sphérique par en écoulement accéléré, C.R. Acad. Sci. Paris, 312, (I), 14991506.Google Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433441.Google Scholar
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11, 302.Google Scholar
Tomboulides, A. G., Orszag, S. A., & Karniadakis, G. E. 1993 Direct and large-eddy simulation of axisymmetric wakes. AIAA Paper 93-0546.