Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-26T10:33:33.428Z Has data issue: false hasContentIssue false

Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism

Published online by Cambridge University Press:  01 November 2005

ERIC COURCHESNE
Affiliation:
University of California, San Diego Children's Hospital Research Center, San Diego
ELIZABETH REDCAY
Affiliation:
University of California, San Diego
JOHN T. MORGAN
Affiliation:
University of California, San Diego
DANIEL P. KENNEDY
Affiliation:
University of California, San Diego

Abstract

Autistic symptoms begin in the first years of life, and recent magnetic resonance imaging studies have discovered brain growth abnormalities that precede and overlap with the onset of these symptoms. Recent postmortem studies of the autistic brain provide evidence of cellular abnormalities and processes that may underlie the recently discovered early brain overgrowth and arrest of growth that marks the first years of life in autism. Alternative origins and time tables for these cellular defects and processes are discussed. These cellular and growth abnormalities are most pronounced in frontal, cerebellar, and temporal structures that normally mediate the development of those same higher order social, emotional, speech, language, speech, attention, and cognitive functions that characterize autism. Cellular and growth pathologies are milder and perhaps nonexistent in other structures (e.g., occipital cortex), which are known to mediate functions that are often either mildly affected or entirely unaffected in autistic patients. It is argued that in autism, higher order functions largely fail to develop normally in the first place because frontal, cerebellar, and temporal cellular and growth pathologies occur prior to and during the critical period when these higher order neural systems first begin to form their circuitry. It is hypothesized that microstructural maldevelopment results in local and short distance overconnectivity in frontal cortex that is largely ineffective and in a failure of long-distance cortical–cortical coupling, and thus a reduction in frontal–posterior reciprocal connectivity. This altered circuitry impairs the essential role of frontal cortex in integrating information from diverse functional systems (emotional, sensory, autonomic, memory, etc.) and providing context-based and goal-directed feedback to lower level systems.The authors were supported by funds from the National Institute of Mental Health (2-ROI-MH36840) and National Institute of Neurological Disorders and Stroke (2-ROI-NS19855) awarded to Eric Courchesne.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry 160, 262273.Google Scholar
Allen, G., Muller, R. A., & Courchesne, E. (2004). Cerebellar function in autism: Functional magnetic resonance image activation during a simple motor task. Biological Psychiatry 56, 269278.Google Scholar
Anderson, A. W., Marois, R., Colson, E. R., Peterson, B. S., Duncan, C. C., Ehrenkranz, R. A., Schneider, K. C., Gore, J. C., & Ment, L. R. (2001). Neonatal auditory activation detected by functional magnetic resonance imaging. Magnetic Resonance Imaging 19, 15.Google Scholar
Araghi–Niknam, M., & Fatemi, S. H. (2003). Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Celullar and Molecular Neurobiology 23, 945952.Google Scholar
Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M., & Lantos, P. (1998). A clinicopathological study of autism. Brain 121, 889905.Google Scholar
Barnea–Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., & Reiss, A. L. (2004). White matter structure in autism: Preliminary evidence from diffusion tensor imaging. Biological Psychiatry 55, 323326.Google Scholar
Baron–Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition 21, 3746.Google Scholar
Bartholomeusz, H. H., Courchesne, E., & Karns, C. (2002). Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics 33, 239241.Google Scholar
Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience 23, 183187.Google Scholar
Belmonte, M. K., Cook, E. H., Jr., Anderson, G. M., Rubenstein, J. L., Greenough, W. T., Beckel–Mitchener, A., Courchesne, E., Boulanger, L. M., Powell, S. B., Levitt, P. R., Perry, E. K., Jiang, Y. H., DeLorey, T. M., & Tierney, E. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy (1). Molecular Psychiatry 9, 646663.Google Scholar
Belmonte, M. K., & Yurgelun–Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research 17, 651664.Google Scholar
Boddaert, N., Belin, P., Chabane, N., Poline, J. B., Barthelemy, C., Mouren–Simeoni, M. C., Brunelle, F., Samson, Y., & Zilbovicius, M. (2003). Perception of complex sounds: Abnormal pattern of cortical activation in autism. American Journal of Psychiatry 160, 20572060.Google Scholar
Boddaert, N., Chabane, N., Belin, P., Bourgeois, M., Royer, V., Barthelemy, C., Mouren–Simeoni, M. C., Philippe, A., Brunelle, F., Samson, Y., & Zilbovicius, M. (2004). Perception of complex sounds in autism: Abnormal auditory cortical processing in children. American Journal of Psychiatry 161, 21172120.Google Scholar
Bruneau, N., Roux, S., Adrien, J. L., Barthelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late autitory evoked potentials (N1 wave-T complex). Clinical Neurophysiology 110, 19271924.Google Scholar
Bruneau, N., Bonnet–Brilhault, F., Gomot, M., Adrien, J. L., & Barthelemy, C. (2003). Cortical auditory processing and communication in children with autism: Electrophysiological/behavioral relations. International Journal Psychophysiology 51, 1725.Google Scholar
Buxhoeveden, D. P., Semendeferi, K., Schenkar, N., Switzer, R., & Courchesne, E. (2005). Reduced minicolumns in frontal cortex in patients with autism. Unpublished manuscript.
Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain, 125(Pt 5), 935951.Google Scholar
Buxhoeveden, D. P., Switala, A. E., Roy, E., Litaker, M., & Casanova, M. F. (2001). Morphological differences between minicolumns in human and nonhuman primate cortex. American Journal of Physical Anthropology 115, 361371.Google Scholar
Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry 57, 126133.Google Scholar
Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage 16, 10381051.Google Scholar
Casaccia–Bonnefil, P., Tikoo, R., Kiyokawa, H., Friedrich, J., Chao, M., & Koff, A. (1997). Oligodendrocite precurser differentiation is perturbed in the absence of the cylin-dependent kinase inhibitor p27kip1. Genes and Development 11, 23352346.Google Scholar
Casanova, M. F. (2004). White matter volume increase and minicolumns in autism. Annals of Neurology, 56, 453; author reply 454.Google Scholar
Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology 58, 428432.Google Scholar
Castelli, F., Frith, C., Happe, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125, 18391849.Google Scholar
Ceponiene, R., Lepisto, T., Shestakova, A., Vanhala, R., Alku, P., Naatanen, R., & Yaguchi, K. (2003). Speech-sound-selective auditory impairment in children with autism: They can perceive but do not attend. Proceedings of the National Academy of Sciences USA 100, 55675572.Google Scholar
Chugani, D. (2000). Autism. In M. Ernst & J. Rumsey (Eds.), The foundation and future of functional neuroimaging in child psychiatry (pp. 171188). New York: Cambridge University Press.
Chugani, D. C., Muzik, O., Rothermel, R. D., Behen, M. E., Chakraborty, P. K., Mangner, T. J., da Silva, E. A., & Chugani, H. T. (1997). Altered serotonin synthesis in the dentato–thalamo–cortical pathway in autistic boys. Annals of Neurology 14, 666669.Google Scholar
Ciesielski, K.T, Harris, R., Hart, B., & Pabst, H. (1997). Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia 35, 643655.Google Scholar
Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalography and Clinical Neurophysiology 75, 207220.Google Scholar
Colombo, J., & Reisin, H. (2004). Interlaminar astroglia of the cerebral cortex: A marker of the primate brain. Brain Research 1006, 126131.Google Scholar
Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology 7, 269278.Google Scholar
Courchesne, E. (2004). Brain development in autism: Early overgrowth followed by premature arrest of growth. Mental Retardation and Developmental Disabilities Research Reviews 10, 106111.Google Scholar
Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association 290, 337344.Google Scholar
Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development 52(3).Google Scholar
Courchesne, E., Karns, C., Davis, H. R., Ziccardi, R., Carper, R., Tigue, Z., Pierce, K., Moses, P., Chisum, H. J., Lord, C., Lincoln, A. J., Pizzo, S., Schreibman, L., Haas, R. H., Akshoomoff, N., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology 57, 245254.Google Scholar
Courchesne, E., Kilman, B. A., Galambos, R., & Lincoln, A. J. (1984). Autism: Processing of novel auditory information assessed by event-related brain potentials. Electroencephalography and Clinical Neurophysiology 59, 238248.Google Scholar
Courchesne, E., & Pierce, K. (2005a). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience 23, 153170.Google Scholar
Courchesne, E., & Pierce, K. (2005b). Why the frontal cortex in autism might be talking only to itself: Local overconnectivity but long-distance disconnection. Current Opinion in Neurobiology 15, 225230.Google Scholar
Courchesne, E., Redcay, E., & Kennedy, D. P. (2004). The autistic brain: Birth through adulthood. Current Opinion in Neurology 17, 489496.Google Scholar
Courchesne, E., Townsend, J., Akshoomoff, N. A., Saitoh, O., Yeung–Courchesne, R., Lincoln, A. J., James, H. E., Haas, R. H., Schreibman, L., & Lau, L. (1994). Impairment in shifting attention in autistic and cerebellar patients. Behavioral Neuroscience 108, 848865.Google Scholar
Courchesne, E., Yeung–Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine 318, 13491354.Google Scholar
Critchley, H., Daly, E., Phillips, M., Brammer, M., Bullmore, E., Williams, S., Van Amelsvoort, T., Robertson, D., David, A., & Murphy, D. (2000). Explicit and implicit neural mechanisms for processing of social information from facial expressions: A functional magnetic resonance imaging study. Human Brain Mapping 9, 93105.Google Scholar
Dawson, G., Finley, C., Phillips, S., Galpert, L., & Lewy, A. (1988). Reduced P3 amplitude of the event-related brain potential: Its relationship to language ability in autism. Journal of Autism and Developmental Disorders 18, 493504.Google Scholar
Dawson, G., Osterling, J., Meltzoff, A. N., & Kuhl, P. (2000). Case study of the development of an infant with autism from birth to two years of age. Journal of Applied Developmental Psychology 21, 299313.Google Scholar
Dawson, G., Osterling, J., Rinaldi, J., Carver, L., & McPartland, J. (2001). Brief report: Recognition memory and stimulus–reward associations: Indirect support for the role of ventromedial prefrontal dysfunction in autism. Journal of Autism and Developmental Disorders 31, 337341.Google Scholar
Dementieva, Y. A., Vance, D. D., Donnelly, S. L., Elston, L. A., Wolpert, C. M., Ravan, S. A., DeLong, G. R., Abramson, R. K., Wright, H. H., & Cuccaro, M. L. (2005). Accelerated head growth in early development of individuals with autism. Pediatric Neurology 32, 102108.Google Scholar
Dobbing, J. (1981). The later development of the brain and its vulnerability. In J. A. Dobbing (Ed.), Scientific foundations of pediatrics (2nd ed., pp. 744759). London: William Heinemann Medical Books.
Friedman, S. D., Shaw, D. W., Artru, A. A., Richards, T. L., Gardner, J., Dawson, G., Posse, S., & Dager, S. R. (2003). Regional brain chemical alterations in young children with autism spectrum disorder. Neurology 60, 100107.Google Scholar
Frith, C. (2003). What do imaging studies tell us about the neural basis of autism? Novartis Foundation Symposium, 251, 149166; discussion 166–176, 281–197.Google Scholar
Frith, U., & Happe, F. (1994). Autism: Beyond “theory of mind.” Cognition 50, 115132.Google Scholar
Gage, N. M., Siegel, B., Callen, M., & Roberts, T. P. (2003). Cortical sound processing in children with autism disorder: An MEG investigation. NeuroReport 14, 20472051.Google Scholar
Gervais, H., Belin, P., Boddaert, N., Leboyer, M., Coez, A., Sfaello, I., Barthelemy, C., Brunelle, F., Samson, Y., & Zilbovicius, M. (2004). Abnormal cortical voice processing in autism. Nature Neuroscience 7, 801802.Google Scholar
Gillberg, C., & de Souza, L. (2002). Head circumference in autism, Asperger syndome, and ADHD: A comparative study. Developmental Medicine and Child Neurology 44, 296300.Google Scholar
Glasson, E. J., Bower, C., Petterson, B., de Klerk, N., Chaney, G., & Hallmayer, J. F. (2004). Perinatal factors and the development of autism: A population study. Archives of General Psychiatry 61, 618627.Google Scholar
Hadjikhani, N., Chabris, C., Joseph, R., Clark, J., McGrath, L., Aharon, I., Feczko, E., Tager–Flusberg, H., & Harris, G. (2004). Early visual cortex organization in autism: An fMRI study. NeuroReport 15, 267270.Google Scholar
Hardan, A. Y., Jou, R. J., Keshavan, M. S., Varma, R., & Minshew, N. J. (2004). Increased frontal cortical folding in autism: A preliminary MRI study. Psychiatry Research 131, 263268.Google Scholar
Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., & Kuroda, Y. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders 25, 118.Google Scholar
Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O'Brien, L. M., Lange, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., Steele, S., Makris, N., Kennedy, D., Harris, G. J., & Caviness, V. S., Jr. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126, 11821192.Google Scholar
Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., Sanders, H. A., Kennedy, D. N., & Caviness, V. S., Jr. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology 55, 530540.Google Scholar
Hobson, R. P. (1993). The emotional origins of social understanding. Philosophical Psychology 6, 227249.Google Scholar
Horwitz, B., Rumsey, J. M., Grady, C. L., & Rapoport, S. I. (1988). The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Archives of Neurology 45, 749755.Google Scholar
Hubl, D., Bolte, S., Feineis–Matthews, S., Lanfermann, H., Federspiel, A., Strik, W., Poustka, F., & Dierks, T. (2003). Functional imbalance of visual pathways indicates alternative face processing strategies in autism. Neurology 61, 12321237.Google Scholar
Hughes, C., Russell, J., & Robbins, T. W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia 32, 477492.Google Scholar
Huttenlocher, P. (2002). Neural plasticity: The effects of environment on the development of cerebral cortex. Cambridge, MA: Harvard University Press.
Jones, E. G. (1984). Laminar distribution of cortical efferent cells. In A. Peters & E. G. Jones (Eds.), Cerebral cortex: Cellular components of the cerebral cortex (pp. 521553). New York: Plenum Press.
Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain 127, 18111821.Google Scholar
Kaufmann, W. E., Cooper, K. L., Mostofsky, S. H., Capone, G. T., Kates, W. R., Newschaffer, C. J., Bukelis, I., Stump, M. H., Jann, A. E., & Lanham, D. C. (2003). Specificity of cerebellar vermian abnormalities in autism: A quantitative magnetic resonance imaging study. Journal of Child Neurology 18, 463470.Google Scholar
Kemper, T., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology 57, 645652.Google Scholar
Kennedy, D. P., Redcay, E., & Courchesne, E. (2004). Cognition, emotion, and the resting state: An fMRI study of neurofunctional abnormalities in autism. Paper presented at the IMFAR, Sacramento, CA.
Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. Journal of Neuropathology and Experimental Neurology 47, 217234.Google Scholar
Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., & Folstein, S. E. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry 36, 282290.Google Scholar
Levitt, J. G., Blanton, R., Capetillo–Cunliffe, L., Guthrie, D., Toga, A., & McCracken, J. T. (1999). Cerebellar vermis lobules VIII–X in autism. Progress in Neuro-psychopharmacology and Biological Psychiatry 23, 625633.Google Scholar
Levitt, J. G., Blanton, R. E., Smalley, S., Thompson, P. M., Guthrie, D., McCracken, J. T., Sadoun, T., Heinichen, L., & Toga, A. W. (2003). Cortical sulcal maps in autism. Cerebral Cortex 13, 728735.Google Scholar
Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., & Sweeney, J. A. (2002). Neocortical system abnormalities in autism: An fMRI study of spatial working memory. Neurology 59, 834840.Google Scholar
Mann, T. A., & Walker, P. (2003). Autism and a deficit in broadening the spread of visual attention. Journal of Child Psychology and Psychiatry and Allied Disciplines 44, 274284.Google Scholar
Marin–Teva, J. L., Dusart, I., Colin, C., Gervais, A., van Rooijen, N., & Mallat, M. (2004). Microglia promote the death of developing Purkinje cells. Neuron 41, 535547.Google Scholar
McEvoy, R. E., Rogers, S. J., & Pennington, B. F. (1993). Executive function and social communication deficits in young autistic children. Journal of Child Psychology and Psychiatry and Allied Disciplines 34, 563578.Google Scholar
Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience 21, 700712.Google Scholar
Minshew, N. J., Goldstein, G., & Siegel, D. J. (1997). Neuropsychologic functioning in autism: Profile of a complex information processing disorder. Journal of the International Neuropsychological Society 3, 303316.Google Scholar
Muller, R. A., Behen, M. E., Rothermel, R. D., Chugani, D. C., Muzik, O., Mangner, T. J., & Chugani, H. T. (1999). Brain mapping of language and auditory perception in high-functioning autistic adults: A PET study. Journal of Autism and Developmental Disorders 29, 1931.Google Scholar
Muller, R. A., Chugani, D. C., Behen, M. E., Rothermel, R. D., Muzik, O., Chakraborty, P. K., & Chugani, H. T. (1998). Impairment of dentato–thalamo–cortical pathway in autistic men: Language activation data from positron emission tomography. Neuroscience Letters 245, 14.Google Scholar
Muller, R. A., Pierce, K., Ambrose, J. B., Allen, G., & Courchesne, E. (2001). Atypical patterns of cerebral motor activation in autism: A functional magnetic resonance study. Biological Psychiatry 49, 665676.Google Scholar
Mundy, P. (1995). Joint attention and social–emotional approach behavior in children with autism. Development and Psychopathology 7, 6382.Google Scholar
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: The role of the dorsal medial–frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry and Allied Disciplines 44, 793809.Google Scholar
Nolte, J. (1993). The human brain (3rd ed.). St. Louis, MO: Mosby Year Book.
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines 37, 5187.Google Scholar
Pierce, K., Haist, F., Sedaghat, F., & Courchesne, E. (2004). The brain response to personally familiar faces in autism: Findings of fusiform activity and beyond. Brain 127, 27032716.Google Scholar
Pierce, K., Müller, R.-A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiform “face area” in autism: Evidence from fMRI. Brain 124, 20592073.Google Scholar
Piven, J. (2004, May 7). Longitudinal MRI study of 18–35 month olds with autism. Paper presented at the International Meeting for Autism Research, Sacramento, California.
Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral Brain Science, 20, 537556; discussion 556–596.Google Scholar
Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta analysis of all brain size reports. Biological Psychiatry 58, 19.Google Scholar
Ring, H. A., Baron–Cohen, S., Wheelwright, S., Williams, S. C., Brammer, M., Andrew, C., & Bullmore, E. T. (1999). Cerebral correlates of preserved cognitive skills in autism: A functional MRI study of embedded figures task performance. Brain 122, 13051315.Google Scholar
Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., & Ritvo, A. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA–NSAC autopsy research report. American Journal of Psychiatry 143, 862866.Google Scholar
Rogers, S. J., & Pennington, B. F. (1991). A theoretical approach to the deficits in infantile autism. Development and Psychopathology 3, 137162.Google Scholar
Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain and Behavior 2, 255267.Google Scholar
Rumsey, J. M., & Hamburger, S. D. (1990). Neuropsychological divergence of high-level autism and severe dyslexia. Journal of Autism and Developmental Disorders 20, 155168.Google Scholar
Schmahmann, J. D., & Pandya, D. N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. Journal of Comparative Neurology 308, 224248.Google Scholar
Schmitz, C. (2004, November 13). New aspects in the neuropathology of the forebrain in autism. Paper presented at the Integrating the Clinical and Basic Sciences of Autism: A Developmental Biology Workshop, Ft. Lauderdale, FL.
Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E., Echelard, D., Artru, A. A., Maravilla, K. R., Giedd, J. N., Munson, J., Dawson, G., & Dager, S. R. (2002). Brain sructural abnormalities in young children with autism spectrum disorder. Neurology 59, 184192.Google Scholar
Teder–Salejarvi, W. A., Pierce, K., Courchesne, E., & Hillyard, S. A. (2005). Auditory spatial localization and attention deficits in autistic adults. Cognitive Brain Research 23, 221234.Google Scholar
Townsend, J., Courchesne, E., Covington, J., Westerfield, M., Harris, N. S., Lyden, P., Lowry, T. P., & Press, G. A. (1999). Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. Journal of Neuroscience 19, 56325643.Google Scholar
Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T.-P., Pierce, K., & Courchesne, E. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello–frontal spatial attention networks. Cognitive Brain Research 11, 127145.Google Scholar
Ullian, E. M., Christopherson, K. S., & Barres, B. A. (2004). Role for glia in synaptogenesis. Glia 47, 209216.Google Scholar
Vaccarino, F. M., & Ment, L. R. (2004). Injury and repair in developing brain. Archives of Diseases in Childhood. Fetal and Neonatal Edition 89, F190F192.Google Scholar
Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology 57, 6781.Google Scholar
Wegiel, J. (2004, November 13). Subcortical neuropathology. Paper presented at the Integrating the Clinical and Basic Sciences of Autism: A Developmental Biology Workshop, Ft. Lauderdale, FL.
Wetherby, A. M., Woods, J., Allen, L., Cleary, J., Dickinson, H., & Lord, C. (2004). Early indicators of autism spectrum disorders in the second year of life. Journal of Autism and Developmental Disorders 34, 473493.Google Scholar
Williams, J. H., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews 25, 287295.Google Scholar
Zilbovicius, M., Garreau, B., Samson, Y., Remy, P., Barthelemy, C., Syrota, A., & Lelord, G. (1995). Delayed maturation of the frontal cortex in childhood autism. American Journal of Psychiatry 152, 248252.Google Scholar