Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T02:10:00.531Z Has data issue: false hasContentIssue false

Gait, aging and dementia

Published online by Cambridge University Press:  01 February 2008

Judy MA Haworth*
Affiliation:
Southmead Hospital, Bristol, UK
*
Address for correspondence: JMA Haworth, Malvern Ward, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, UK.

Extract

Cognitive impairment has been recognized as a risk factor for falls and for increasing the severity of injury following a fall, but the mechanisms by which cognitive impairment influences gait and postural control have been unclear. A recent report that galantamine improves gait parameters in older adults may help to untangle this.

Type
Neuropsychiatry of old age
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1American Geriatric Society, British Geriatric Society and American Association of Orthopedic Surgeons panel. Guideline for the prevention of falls in older people. J Am Geriatr Soc 2001; 49: 664–72.Google Scholar
2Tinetti, ME, Doucette, J, Clais, E, Marottoli, R. Risk factors for serious injury during falls by older persons in the community. J Am Geriatr Soc 1995; 43: 1214–21.CrossRefGoogle ScholarPubMed
3Assal, F, Kressig, RW, Herrman, FR, Beauchet, O. Galantamine improves gait performance in patients with Alzheimer's disease. J Am Geriatr Soc 2008; 56: 946–47.CrossRefGoogle ScholarPubMed
4Hausdorff, JM, Yogev, G, Springer, S, Simon, ES, Giladi, N. Walking is more like catching than tapping gait in the elderly as a complex cognitive task. Exp Brain Research 2005; 164: 541–48.CrossRefGoogle ScholarPubMed
5Sheridan, PL, Hausdorff, JM. The role of higher level cognitive function in gait: Executive dysfunction contributes to fall risk in Alzheimer's disease. Dement Geriatric Cogn Discord 2007; 24: 125–37.CrossRefGoogle ScholarPubMed
6Dimitrijevic, MR, Gerasimenko, Y, Pinter, MM. Evidence for a spinal central pattern generator in humans. In: Kiehn, O, Harris-Warrick, RM ed. Neuronal mechanisms for generating locomotor activity. New York: New York Academy of Sciences 1998; 360–76.Google Scholar
7Hiyamizu, M, Morioka, S, Matsuo, A, Shomoto, K.Ability to monitor and adjust one's walking pattern. [Abstract] Proceedings of second International Congress on Gait and Mental Function, Amsterdam, Feb. 2008.CrossRefGoogle Scholar
8Jahn, K, Deutschlander, A, Stephan, T, Kalla, R, Strupp, M, Brandt, T. Imaging supraspinal control of human locomotion. [Abstract] Proceedings of second International Congress on Gait and Mental Function, Amsterdam, Feb. 2008.CrossRefGoogle Scholar
9Whittle, M. The gait cycle. In: Whittle, M. Gait analysis, an introduction. PLACE: Butterworth Heinemann, 2007.Google Scholar
10Nutt, JG, Marsden, CD, Thompson, PD. Human walking and higher level gait disorders, particularly in the elderly. Neurology 1993; 43: 268–79.CrossRefGoogle ScholarPubMed
11Nutt, JG. Classification of gait and balance disorders. Adv Neurol 2001; 87: 135–41.Google ScholarPubMed
12Murray, MP, Kory, RC, Clarkson, BH. Walking patterns in healthy old men. J Gerontology 1969; 24: 169178.CrossRefGoogle ScholarPubMed
13Murray, MP, Kory, RC, Sepic, SB. Walking patterns of normal women. Arch Phys Med Rehabil 1970; 51: 637–50.Google ScholarPubMed
14Nigg, BM, Fisher, V, Ronsky, JL. Gait characteristics as a function of age and gender. Gait Posture 1994; 2: 213–20.CrossRefGoogle Scholar
15Prince, E, Corriveau, H, Hebert, R. Gait in the elderly. Gait Posture 1997; 5: 128–35.CrossRefGoogle Scholar
16Winter, DA, Patla, AE, Frank, JS, Walt, SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 1990; 70: 340–47.CrossRefGoogle ScholarPubMed
17Kerrigan, DC, Todd, MK, Della Croce, U, Lipsitz, LA, Collins, JJ. Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Arch Phys Med Rehabil 1998; 79: 317–22.CrossRefGoogle ScholarPubMed
18McIlroy, WE, Maki, BE. Age-related changes in compensatory stepping in response to unpredictable perturbations. J Gerontol Med Sci 1996; 51A: M289M296.CrossRefGoogle Scholar
19Maki, BE. Gait changes in older adults: Predictors of falls or indicators of fear? J Am Geriatr Soc 1997; 45: 313–20.CrossRefGoogle ScholarPubMed
20Wolfson, LI, Whipple, R, Amerman, P, Kleinberg, A. Stressing the postural response, a quantitative method for testing balance. J Am Geriatr Soc 1986; 34: 845–45.CrossRefGoogle ScholarPubMed
21Krishnamurthy, M, Vergese, J. Gait characteristics in nondisabled community residing nonagenarians. Arch Phys Med Rehabil 2006; 87: 541–45.CrossRefGoogle ScholarPubMed
22Woo, J, Ho, SC, Lau, J, Chan, SG, Yuen, YK. Age-associated gait changes in the elderly: Pathological or physiological? Neuroepidemiol 1995; 14: 6571.CrossRefGoogle ScholarPubMed
23Bendall, MJ, Bassey, EJ, Pearson, MB. Factors affecting walking speed of elderly people. Age Ageing 1989; 18: 327–32.CrossRefGoogle ScholarPubMed
24Dobbs, RJ, Lubel, DD, Charlett, A et al. Hypothesis: Age-associated changes in gait represent in part, a tendency towards parkinsonism. Age Ageing 1992; 21: 221–25.CrossRefGoogle Scholar
25Wolfson, L, Whipple, R, Amerman, P, Tobin, JN. Gait assessment in the elderly: a gait abnormality rating scale and its relation to falls. J Gerontol 1990; 45: M1219.CrossRefGoogle ScholarPubMed
26Hausdorff, JM, Edelberg, HK, Mitchell, SL, Goldberger, AL, Wei, JY. Increased gait unsteadiness in community dwelling elderly fallers. Arch Phys Med Rehabil. 1997; 78: 278–83.CrossRefGoogle ScholarPubMed
27Oberg, T, Karsznia, A, Oberg, K. Basic gait parameters: reference data for normal subjects, 10–79 years of age. J Rehabil Res Dev 1993; 30: 210–23.Google ScholarPubMed
28Bohannon, RW. Comfortable and maximum walking speed of adults aged 20–79: reference values and determinants. Age Ageing 1997; 26: 1519.CrossRefGoogle ScholarPubMed
29Samson, MM, Crowe, A, de Vreede, PL, Dessens, JA, Duursma, SA, Verhaar, HJ. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging (Milano) 2001; 13: 1621.Google Scholar
30Maylor, EA, Wing, AM. Age differences in postural stability are increased by additional cognitive demands. J Gerontol: Psychol Sci 1996; 51: 143–54.CrossRefGoogle ScholarPubMed
31Beauchet, O, Dubost, V, Aminian, K, Gonthier, R, Kressig, RW. Dual task-related gait changes in the elderly: Does the type of cognitive task matter? J Motor Beh 2005; 37: 259–64.Google ScholarPubMed
32Ble, A, Volpato, S, Zuliani, G et al. Executive function correlates with walking speed in older persons: The InCHIANTI Study. J Am Geriatr Soc 2005; 53: 410–15.CrossRefGoogle ScholarPubMed
33Bock, O, Engelhard, K, Guardiera, P, Allmer, H, Kleinert, J. Conditions for increased dual task costs of walking in the elderly. [Abstract] proceedings of second International Congress in Gait and Mental Function., Amsterdam, Feb 2008.CrossRefGoogle Scholar
34Berkmann, L F, Seeman, T E, Albert, M et al. High, usual and impaired functioning in community-dwelling older men and women: findings from the MacArthur Foundation Research Network on Successful Aging. J Clin Epidemiol 1993; 46: 1129–40.CrossRefGoogle Scholar
35Guralnik, JM, Ferrucci, L, Simonsick, EM, Salive, ME, Wallace, RB. Lower extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 1995; 332: 556–61.CrossRefGoogle ScholarPubMed
36Ramakers, IH, Visser, PJ, Aalten, P et al. Symptoms of preclinical dementia in general practice up to five years before dementia diagnosis. Dement Geriatr Cog Disord 2007; 24: 300–06.CrossRefGoogle ScholarPubMed
37Verghese, J, Lipton, RB, Hall, CB, Kuslansky, G, Katz, MJ, Buschke, H. Abnormality of gait as a predictor of non-Alzheimer's dementia. New Engl J Med 2002; 347: 1761–68.CrossRefGoogle ScholarPubMed
38Verghese, J, Wang, C, Lipton, RB, Holtzer, R, Xue, X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 2007; 78: 929–35.CrossRefGoogle ScholarPubMed
39Wang, L, Larson, EB, Bowen, JD, van Belle, G. Performance-based physical function and future dementia in older people. Arch Int Med 2006; 166: 1115–20.CrossRefGoogle ScholarPubMed
40Abbott, RD, White, LR, Webster Ross, G, Masaki, KH, Curb, JD, Petrovitch, H. Walking and dementia in physically capable elderly men. J Am Med Assoc 2004; 292: 1447–53.CrossRefGoogle ScholarPubMed
41Weuve, J, Kang, JH, Manson, JE, Breteler, MB, Ware, JH, Grodstein, F. Physical activity, including walking and cognitive function in older women. J Am Med Assoc 2004; 292: 1454–61.CrossRefGoogle ScholarPubMed
42Kramer, AF, Hahn, S, Cohen, NJ et al. Ageing, fitness and neurocognitive function. Nature 1999; 400: 416–19.CrossRefGoogle ScholarPubMed
43Stones, MJ, Dawe, D. Acute exercise facilitates semantically cued memory in nursing home residents. J Am Geriatr Soc 1993; 41: 531–34.CrossRefGoogle ScholarPubMed
44EJA Van Paasschen, J, Deijen, JB et al. Physical activity and executive functions in the elderly with mild cognitive impairment. Aging Ment Health 2005; 9: 272–80.Google Scholar
45McKhann, G, Drachman, D, Folstein, M, Katzman, R, Price, D, Stadian, EM. Clinical diagnosis of Alzheimer's disease; Report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease. Neurology 1984; 34: 939–44.CrossRefGoogle ScholarPubMed
46Ala, TA, Frey, WH. Validation of the NINCDS-ADRDA criteria regarding gait in the clinical diagnosis of Alzheimer's disease. A clinicopathological study. Alzheimer Dis Assoc Disord 1995; 9: 152–59.CrossRefGoogle Scholar
47Visser, H. Gait and balance in senile dementia of Alzheimer's type. Age Ageing 1983; 12: 296301.CrossRefGoogle ScholarPubMed
48O'Keefe, ST, Kazeem, H, Philpott, RM, Playfer, JR, Gosney, M, Lye, M. Gait disturbance in Alzheimer's disease. A clinical study. Age Ageing 1996; 25: 313–16.CrossRefGoogle Scholar
49Bazner, H, Oster, M, Daffertshofer, M, Hennerici, M. Assessment of gait in subcortical vascular encephalopathy by computerised analysis; a cross-sectional and longitudinal study. J Neurol 2000; 247: 841–49.CrossRefGoogle ScholarPubMed
50Cummings, JL. Vascular subcortical dementias. Clinical aspects. Dementia 1994; 5: 177–80.Google ScholarPubMed
51van Iersel, MB, Hoefsloot, W, Munneke, M, Bloem, BR, Olde Rikkert, MGM. Systematic review of quantitative clinical gait analysis in patients with dementia. Z Gerontol Geriatr 2004; 37: 2732.CrossRefGoogle ScholarPubMed
52Waite, IM, Broe, GA, Grayson, DA, Creasey, H. Motor function and disability in the dementias. Int J Geriatr Psychiatry 2000; 15: 897903.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
53Merory, JR, Wittwer, JE, Rowe, CC, Webster, KE. Quantitative gait analysis in patients with Lewy bodies and Alzheimer's disease. Gait Posture 2007; 26: 414–19.CrossRefGoogle ScholarPubMed
54van Iersal, MB, Verbeek, ALM, Bloem, BR, Munneke, M, Esselink, RAJ, Olde Rikkert, MGM. Frail elderly patients with dementia go too fast. J Neurol Neurosurg Psychiatry 2006; 77: 874–76.CrossRefGoogle Scholar
55Pettersson, AF, Olsson, E, Wahlund, L-O. Motor function in subjects with mild cognitive impairment and early Alzheimer's disease. Dement Geriatr Cogn Disord 2005; 19: 299304.CrossRefGoogle ScholarPubMed
56Franssen, EH, Souren, LE, Torossian, CL, Reisberg, B. Equilibrium and limb co-ordination in mild cognitive impairment and mild Alzheimer's disease. J Am Geriatric Soc 1999; 47: 463–69.CrossRefGoogle Scholar
57Gerolodi, C, Ferrucci, L, Bandinelli, S et al. Mild cognitive deterioration with sub-cortical features: prevalence, clinical characteristics, and association with cardiovascular risk factors in community-dwelling older persons (The InChIANTI Study). J Am Geriatr Soc 2003; 51: 1064–71.CrossRefGoogle Scholar
58Boyle, PA, Wilson, RS. Lower-extremity motor function and disability in mild cognitive impairment. Exp Aging Res 2007; 33: 355–71.CrossRefGoogle ScholarPubMed
59Aggarwal, NT, Wilson, RS, Beck, TL, Bienias, JL, Bennett, DA. Motor dysfunction in mild cognitive jmpairment and the risk of incident Alzheimer disease. Arch Neurol 2006; 63: 1763–69.CrossRefGoogle ScholarPubMed
60Sheridan, PL, Solomont, J, Kowall, N et al. . Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer's disease. J. Am Geriatr Soc 2003; 51: 1633–37.CrossRefGoogle ScholarPubMed
61Cocchini, G, Della Sala, S, Logie, RH, Pagani, R, Sacco, L, Spinnler, H. Dual task effects of walking when talking in Alzheimer's disease. Rev Neurol (Paris) 2004; 160: 7480.CrossRefGoogle ScholarPubMed
62Adams, RL, Parsons, OA, Culbertson, JL et al. Neuropsychology for clinical practice: etiology, assessment and treatment of common neurologic disorders. Washington DC. American Psychological Association, 1996.CrossRefGoogle Scholar
63Spreen, O, Strauss, E. A compendium of neuropsychological tests: administration, norms and commentary, second edition. New York: Oxford University Press, 1998.Google Scholar
64Perry, RJ, Hodges, JR. Attention and executive deficits in Alzheimer's disease: a critical review. Brain 1999; 122: 383404.CrossRefGoogle ScholarPubMed
65Baddeley, AD, Baddeley, HA, Bucks, RS, Wilcock, GK. Attentional control in Alzheimer's disease. Brain 2001; 124: 14921508.CrossRefGoogle ScholarPubMed
66Fahn, S, Elton, R. Unified Parkinson's Disease Rating Scale. In: Fahn, S, Marsden, C, Goldst, D eds. Recent developments in Parkinson's disease. (Vol 12). Florham Park, NJ.: MacMillan Health Information; 1987 153–63.Google Scholar
67Ashe, M, Nagamatsu, L, Katarynych, L, Liu-Ambrose, TYL. Key processes of executive function underlying dual tasking. [Abstract] Proceedings of second International Congress on Gait and Mental Function, Amsterdam, Feb. 2008.CrossRefGoogle Scholar
68Heuninckx, S, Wenderoth, N, Debaere, F. Neural basis of aging: the penetration of cognition into action control. J Neurosci 2005; 25: 6787–96.CrossRefGoogle ScholarPubMed
69Patel, I, Turano, KA, Broman, AT, Bandeen-Roche, K, Munoz, B, West, SK. Measures of visual function and percentage of preferred walking speed in older adults: The Salisbury Eye Evaluation Project. Investigative ophthalmology and visual science 2006; 47: 6571.CrossRefGoogle ScholarPubMed
70Pearson, RCA, Esiri, MM, Hiorns, RW. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer's disease. Proceedings of the National Academy of Sciences, USA 1985; B2: 4531–34.Google Scholar
71Arnold, SE, Hyman, BT, Flory, J, Damasio, AR, Van-Hoesen, GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cerebral Cortex 1991; 1: 103–16.CrossRefGoogle ScholarPubMed
72Lewis, DA, Campbell, MJ, Terry, RD, Morrison, JH. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. J Neurosci 1987; 7: 17991808.CrossRefGoogle ScholarPubMed
73Cronin-Golomb, A. Vision in Alzheimer's disease. The Gerontologist 1995; 35: 370–76.CrossRefGoogle ScholarPubMed
74Rizzo, M, Nawrot, M. Perception of movement and shape in Alzheimer's disease. Brain 1998; 12: 2259–70.CrossRefGoogle Scholar
75Mittenberg, W, Malloy, M, Petrick, J, Knee, K. Impaired depth perception discriminates Alzheimer's dementia from aging and major depression. Arch Clin Neuropsychol 1994; 9: 71–9.CrossRefGoogle ScholarPubMed
76Tales, A, Haworth, J, Nelson, S, Snowden, RJ, Wilcock, GK. Abnormal visual search in mild cognitive impairment and Alzheimer's disease. Neurocase 2005; 11: 8084.CrossRefGoogle ScholarPubMed
77Tales, A, Haworth, J, Wilcock, GK, Newton, P, Butler, S. Visual mismatch negativity highlights abnormal pre-attentive visual processing in mild cognitive impairment and Alzheimer's disease. Neuropsychologica 2008; 46: 1224–32.CrossRefGoogle ScholarPubMed
78Kosnik, W, Winslow, I, Kline, D, Rasinski, K, Sekuler, R. Visual changes in daily life through adulthood. J Gerontol B Psychol Sci Soc Sci 1988; 43B: P63P70.Google Scholar
79Owsley, C, McGwin, G. Association between visual attention and mobility in older adults. J Am Geriatr Soc 2004; 52: 1901–06.CrossRefGoogle ScholarPubMed
80Fukuyama, H, Ouchi, Y, Matsuzaki, S et al. Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 1997; 228: 183–86.CrossRefGoogle ScholarPubMed
81Riecker, A, Wildgreber, D, Mathiak, K et al. Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger-tapping: a fMRI study. Neuroimage 2003; 18: 731–39.CrossRefGoogle ScholarPubMed
82Jahn, K, Deutschlander, A, Stephan, T, Kalla, R, Strupp, M, Brandt, T. Imaging supraspinal control of human locomotion. [Abstract] Proceedings of second International Congress on Gait and Mental Function, Amsterdam, Feb 2008.CrossRefGoogle Scholar
83Zehr, EP, Balter, DP, Ferris, SR, Hundza, SR, Loadman, PM, Stoloff, RH. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks. J Physiol 2007; 582: 209–27.CrossRefGoogle ScholarPubMed
84Jellinger, K. The pedunculopontine nucleus in Parkinson's disease, progressive supranuclear palsy and Alzheimer's disease. J Neurol Neurosurg Psychiatry 1988:51: 540–43.CrossRefGoogle ScholarPubMed
85Christensen, LO, Johannsen, P, Sinkjaer, T, Petersen, N, Pyndt, HS, Nielsen, JB. Cerebral activation during bicycle movements in man. Exp Brain Res 2000; 135: 6672.CrossRefGoogle ScholarPubMed
86Malouin, F, Richards, CL, Jackson, PL, Dumas, F, Doyon, J. Brain activations during motorimagery oflocomotor-related tasks: a PET study. Hum Brain Mapp 2003; 19: 4762.CrossRefGoogle Scholar
87Kerber, K, Enrietto, JA, Jacobson, KM, Baloh, RW. Disequilibrium in older people: a prospective study. Neurology 1998; 51: 574–80.CrossRefGoogle ScholarPubMed
88Guo, X, Steen, B, Matousek, M et al. A population-based study on brain atrophy and motor performance in elderly women. J Gerontol Med Sci 2001; 56: 633–37.CrossRefGoogle Scholar
89Weiner, SI, Berthoz, A, Zugaro, MB. Multisensory processing in the elaboration of place and head direction responses by limbic system neurons. Cogn Brain Res 2002; 14: 7590.CrossRefGoogle Scholar
90Jordan, K, Schadow, J, Wuestenberg, T, Heinze, HJ, Jancke, L. Different cortical activations for subjects using allocentric or egocentric strategies in a virtual navigation task. Neuroreport 2004; 15: 135–40.CrossRefGoogle ScholarPubMed
91Ellis, JR, Ellis, KP, Bartholemeusz, CF et al. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J N Neuropsychopharmacol 2006; 9: 175–89.CrossRefGoogle ScholarPubMed
92Bennett, D, Beckett, L, Murray, A et al. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Eng J Med 1996; 334: 7176.CrossRefGoogle Scholar
93Schneider, JA, Li, J, Li, Y, Wilson, RS, Kordower, JH, Bennett, DA. Substantia nigra tangles are related to gait impairment in older persons. Ann Neurol 2006; 59: 166–73.CrossRefGoogle ScholarPubMed
94Wilson, RS, Schneider, JA, Bienias, JL, Evans, DA, Bennett, DA. Parkinsonianlike signs and risk of incident Alzheimer's disease in older persons. Arch Neurol 2003; 60: 539–44.CrossRefGoogle ScholarPubMed
95Richards, M, Stern, Y, Mayeux, R. Subtle extrapyramidal signs can predict the development of dementia in elderly individuals. Neurology 1993; 43: 2184–88.CrossRefGoogle ScholarPubMed
96Ferrucci, L, Penninx, BW, Volpato, S et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 2002; 50: 1947–54.CrossRefGoogle ScholarPubMed
97Philips, MI. Function of angiotensin in the central nervous system. Annu Rev Physiol 1987; 49: 413–35.CrossRefGoogle Scholar
98Croog, SH, Levine, S, Testa, MA et al. The effects of antihypertensive therapy on the quality of life. New Engl J Med 1986; 314: 1657–64.CrossRefGoogle Scholar
99Barnes, JM, Barnes, NM, Costall, B et al. Angiotensin II inhibits acetylcholine release from human temporal cortex: implications for cognition. Brain Res 1990; 507: 341–43.CrossRefGoogle ScholarPubMed
100Domeney, AM. Angiotensin-converting enzyme inhibitors as potential cognitive enhancing agents. J Psychiatr Neurosci 1994; 19: 4650.Google ScholarPubMed
101Nebes, RD, Pollock, BG, Halligan, EM, Kirshner, MA, Houck, PR. Serum anticholinergic activity and motor performance in elderly persons. J Gerontol A Biol Sci Med Sci 2007; 62A: 8386.CrossRefGoogle Scholar
102Cao, YJ, Mager, DE, Simonsick, EM et al. Physical and cognitive performance and the burden of anticholinergics, sedatives and ACE inhibitors in older women. Clin Pharmacol Ther 2008; 83: 422–29.CrossRefGoogle ScholarPubMed
103Kaasinen, V, Nâgren, K, Järvenpää, T et al. Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer's disease. J Clin Psychopharmacol 2002; 22 615–20.CrossRefGoogle ScholarPubMed
104Giacobini, E, Spiegel, R, Enz, A, Veroff, AE, Cutler, NR. Inhibition of acetyl and butyrylcholinesterase in the CSF of patients with Alzheimer's disease by rivastigmine: correlation with cognitive benefit. J Neurol Transm 2002; 109: 1053–65.CrossRefGoogle ScholarPubMed
105Maelicke, A, Albuquerque, EX. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer's disease. Eur J Pharmacol 2000; 393: 165–70.CrossRefGoogle ScholarPubMed
106Sharp, BM, Yatsula, M, Fu, Y. Effects of galantamine, a nicotinic allosteric potentiating ligand, on nicotine-induced catecholamine release in hippocampus and nucleus accumbens of rats. J Pharmacol Exp Ther 2004; 309: 1116–23.CrossRefGoogle ScholarPubMed
107Geerts, H, Lazarewicz, M, Spiros, A et al. Galantamine benefits in Alzheimer's disease are related to increases in dopamine output. Schizophrenia Res 2003; 60 (suppl)135.CrossRefGoogle Scholar