Journal of Fluid Mechanics



On Faraday waves


John  Miles a1
a1 Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, CA 92093-0225, USA

Article author query
miles j   [Google Scholar] 
 

Abstract

The standing waves of frequency ω and wavenumber κ that are induced on the surface of a liquid of depth d that is subjected to the vertical displacement ao cos 2wt are determined on the assumptions that: the effects of lateral boundaries are negligible; [varepsilon] = ka0 tanh kd [double less-than sign] 1 and 0 < [varepsilon]−δ = O(δ3), where δ is the linear damping ratio of a free wave of frequency ω; the waves form a square pattern (which follows from observation). This problem, which goes back to Faraday (1831), has recently been treated by Ezerskii et al. (1986) and Milner (1991) in the limit of deep-water capillary waves (kd, kl* [dbl greater-than sign] 1, where l* is the capillary length). Ezerskii et al. show that the square pattern is unstable for sufficiently large [varepsilon]—δ, and Milner shows that nonlinear damping is necessary for equilibration of the square pattern. The present formulation extends those of Ezerskii et al. and Milner to capillary–gravity waves and finite depth and incorporates third-order parametric forcing, which is neglected in these earlier formulations but is comparable with third-order damping. There are quantitative differences in the resulting evolution equations (for kd, kl* [dbl greater-than sign] 1), which appear to reflect errors in the earlier work.

These formulations determine a locus of admissible waves, but they do not select a particular wave. The hypothesis that the selection process maximizes the energy-transfer rate to the Faraday wave selects the maximum of the resonance curve in a frequency-amplitude plane.

(Published Online April 26 2006)
(Received March 3 1992)
(Revised September 21 1992)



Metrics