Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T10:56:32.568Z Has data issue: false hasContentIssue false

Structure Determination of Atomically Controlled Crystal Architectures Grown within Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  28 September 2005

Angus I. Kirkland
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
Rüdiger R. Meyer
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
J. Sloan
Affiliation:
Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
J.L. Hutchison
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
Get access

Abstract

Indirect high resolution electron microscopy using one of several possible data-set geometries offers advantages over conventional high-resolution imaging in enabling the recovery of the complex wavefunction at the specimen exit plane and simultaneously eliminating the aberrations present in the objective lens. This article discusses results obtained using this method from structures formed by inorganic materials confined within the bores of carbon nanotubes. Such materials are shown to be atomically regulated due to their confinement, leading to integral layer architectures that we have termed “Feynman crystals.” These one-dimensional (1D) crystals also show a wide range of structural deviations from the bulk, including unexpected lattice distortions, and in some cases entirely new forms have been observed.

Type
Special Issue: Frontiers of Electron Microscopy in Materials Science
Copyright
© 2005 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonov, R.D. & Johnson, A.T. (1999). Subband population in a single-wall carbon nanotube diode. Phys Rev Lett 83, 32743276.Google Scholar
Bachtold, A., Hadley, P., Nakanishi, T., & Dekker, C. (2001). Logic circuits with carbon nanotube transistors. Science 294, 13171320.Google Scholar
Coene, W.M.J., Janssen, G., Op de Beeck, M., & van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.Google Scholar
Coene, W.M.J., Thust, A., Op de Beeck, M., & van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.Google Scholar
Feynman, R. (1961). There's plenty of room at the bottom: An invitation to enter a new field of physics. In Miniaturization, Gilbert, H.D. (Ed.), pp. 282296. New York: Reinhold.
Kirkland, A.I. & Meyer, R.R. (2004). Indirect high resolution electron microscopy: Aberration measurement and image reconstruction. Microsc Microanal 10, 401413.Google Scholar
Kirkland, A.I., Saxton, W.O., & Chand, G. (1997). Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 1, 1122.Google Scholar
Kirkland, A.I., Saxton, W.O., Chau, K-L., Tsuno, K., & Kawasaki, M. (1995). Super resolution by aperture synthesis: Tilt reconstruction in CTEM. Ultramicroscopy 57, 355374.Google Scholar
Kirkland, A.I. & Sloan, J. (2002). Direct and indirect electron microscopy of encapsulated nanocrystals. Top Catal 21, 139154.Google Scholar
Koster, A.J. & de Ruijter, W.J. (1992). Practical autoalignment of transmission electron microscopes. Ultramicroscopy 40, 89107.Google Scholar
Koster, A.J., de Ruijter, W.J., van den Bos, A., & van der Mast, K.D. (1989). Autotuning of a TEM using minimum electron dose. Ultramicroscopy 27, 251272.Google Scholar
Koster, A.J., van den Bos, A., & van der Mast, K.D. (1987). An autofocus method for a TEM. Ultramicroscopy 21, 209222.Google Scholar
Krivanek, O.L. (1976). A method for determining the coefficient of spherical aberration from a single micrograph. Optik 45, 97101.Google Scholar
Krivanek, O.L. & Leber, M.L. (1994). Autotuning for 1 Å resolution. In Proceedings of the 13th ICEM, Jouffrey, B. & Coliex, C. (Eds.), pp. 157158. Paris: les Editions de Physique.
Kuglin, C.D. & Hines, D.C. (1975). The phase correlation image alignment method. In Proceedings of the IEEE International Conference on Cybernetics and Society, pp. 163165. Piscataway, New Jersey: IEEE Press.
Meyer, R.R., Friedrichs, S., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2003). A composite method for the determination of the chirality of single walled carbon nanotubes. J Microsc 212, 152157.Google Scholar
Meyer, R.R., Kirkland, A.I., & Saxton, W.O. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric abberations. Ultramicroscopy 92, 89109.Google Scholar
Meyer, R.R., Kirkland, A.I., & Saxton, W.O. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of antisymmetric aberrations. Ultramicroscopy 99, 115123.Google Scholar
Meyer, R.R., Sloan, J., Dunin-Borkowski, R., Kirkland, A.I., Novotny, M., Bailey, S., Hutchison, J.L., & Green, M.L.H. (2000). Discrete atom imaging of one dimensional crystals formed within single walled carbon nanotubes. Science 289, 13241326.Google Scholar
Op de Beeck, M., van Dyck, D., & Coene, W. (1996). Wave function reconstruction in HRTEM: The parabola method. Ultramicroscopy 64, 167183.Google Scholar
Pan, M. (1998). TEM autotuning with slow-scan CCD cameras. In Proceedings of the 14th ICEM, Benavidez, H.A.C. & Yacaman, M.J. (Eds.), vol. 1, pp. 263264. Cancun: IoP.
Peigney, A., Coquay, P., Flahaut, E., Vandenberghe, R.E., De Grave, E., & Laurent, C. (2001). A study of the formation of single- and double-walled carbon nanotubes by a CVD method. J Phys Chem B 105, 96999710.Google Scholar
Philp, E., Sloan, J., Kirkland, A.I., Meyer, R.R., Friedrichs, S., Hutchison, J.L., & Green, M.L.H. (2003). An encapsulated helical 1D cobalt iodide crystal. Nat (Mater) 2, 788791.Google Scholar
Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., & Lieber, C.M. (2000). Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 9497.Google Scholar
Saxton, W.O. (1988). Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. In Image and Signal Processing in Electron Microscopy, Proceedings of the 6th Pfefferkorn Conference, Niagara, Hawkes, P.W., Ottensmeyer, F.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago: Scanning Microscopy International.
Saxton, W.O. (1995a). Observation of lens aberrations for very high-resolution electron microscopy. I. Theory. J Microsc 179, 201214.Google Scholar
Saxton, W.O. (1995b). Simple prescriptions for estimating three-fold astigmatism. Ultramicroscopy 58, 239243.Google Scholar
Saxton, W.O. (2000). A new way of measuring microscope aberrations. Ultramicroscopy 81, 4144.Google Scholar
Sloan, J., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2002). Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Comm 13, 13191332.Google Scholar
Sloan, J., Kirkland, A.I., Hutchison, J.L., & Green, M.L.H. (2004). Aspects of crystal growth within carbon nanotubes. Comptes Rendu 4, 10631074.Google Scholar
Sloan, J., Novotny, M.C., Bailey, S.R., Brown, G., Xu, C., Williams, V.C., Friedrichs, S., Flahaut, E., Callendar, R.L., York, A.P.E., Coleman, K.S., Green, M.L.H., Dunin-Borkowski, R.E., & Hutchison, J.L. (2000). Two layer 4 : 4 Co-ordinated KI crystals grown within single walled carbon nanotubes. Chem Phys Lett 329, 6165.Google Scholar
Tans, S.J., Verschueren, A.R.M., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature 393, 4952.Google Scholar
Thust, A., Coene, W.M.J., Op de Beeck, M., & van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Thust, A., Jia, C.L., & Urban, K. (2002). Extraction of imaging parameters from the object wave function in phase-retrieval electron microscopy. In Proceedings of the 15th ICEM, Engelbrecht, J., Sewell, T., Witcomb, M., Cross, R. & Richards, P. (Eds.), pp. 167168. Durban, South Africa: Microscopy Society of Southern Africa.
Thust, A., Overwijk, M.H.F., Coene, W.M.J., & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase retrieval HRTEM. Ultramicroscopy 64, 249264.Google Scholar
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.Google Scholar
van Dyck, D., Op de Beeck, M., & Coene, W.M.J. (1993). A new approach to object wave-function reconstruction in electron-microscopy. Optik 93, 103107.Google Scholar
Wilson, M. (2002). Structure and phase stability of novel ‘twisted’ crystal structures in carbon nanotubes. Chem Phys Lett 366, 504509.Google Scholar
Yao, Z., Postma, Ch., Batents, L., & Dekker, C. (1999). Carbon nanotube intramolecular junctions. Nature 402, 273276.Google Scholar
Zandbergen, H.W. & van Dyck, D. (2000). Exit wave reconstructions using through focus series of HREM images. Microsc Res Tech 49, 301323.Google Scholar
Zemlin, F. (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy 4, 241245.Google Scholar
Zemlin, F., Weiss, K., Schiske, P., Kunath, W., & Herrmann, K.-H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.Google Scholar
Zhou, C., Kong, J., Yenilmez, E., & Dai, H. (2000). Modulated chemical doping of individual carbon nanotubes. Science 290, 15521555.Google Scholar