Journal of Fluid Mechanics


Starting flow through nozzles with temporally variable exit diameter

a1 Graduate Aeronautical Laboratories & Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA

Article author query
dabiri jo   [Google Scholar] 
gharib m   [Google Scholar] 


Starting flow through a nozzle or orifice typically results in the transient formation of a leading vortex ring and trailing jet. Experiments are conducted to investigate the dynamics of this process in the case of a temporally variable nozzle exit diameter, with the aim of understanding these flows as they occur in Nature and emerging technologies. By kinematically decoupling the source flow from the nozzle motion, comparison across several classes of exit diameter temporal variation is facilitated. Kinematic models of the starting flows are used to accurately predict the fluid circulation produced by the vortex generators, and to emphasize the special role of the nozzle boundary layer in dictating the nature of the global flow patterns. A dimensionless temporal parameter is derived in order to track the vortex formation process for the various classes of nozzle motion. Dynamics of vortex ring disconnection from the source flow are studied in this new dimensionless framework. We show that temporally increasing the nozzle exit diameter as the starting flow develops results in higher-energy vortex ring structures with peak vorticity located further from the axis of symmetry relative to a static nozzle case. In addition, the normalized energy supplied by the vortex generator is increased in this process. We do not observe a delay in the onset of vortex ring disconnection from the trailing jet, as predicted by previous numerical simulations. In contrast, growth of the leading vortex ring is substantially augmented by temporally decreasing the nozzle exit diameter during fluid ejection, as noted in a previous experiment. Normalized vortex ring circulation is increased 35% in these cases, and the normalized energy of the generated vortex rings is equivalent to that of Hill's spherical vortex. These observed effects are explained by considering the measured vorticity distribution and energy of the starting flows. Strategies are suggested to exploit the discovered dynamics for various pulsed-jet applications.

(Received June 21 2004)
(Revised March 10 2005)