Ergodic Theory and Dynamical Systems

Research Article

An asymptotic-numerical approach for examining global solutions to an ordinary differential equation


a1 Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY 14850, USA (email: [email protected])


Purely numerical methods do not always provide an accurate way to find all the global solutions to nonlinear ordinary differential equations on infinite intervals. For example, finite-difference methods fail to capture the asymptotic behavior of solutions, which might be critical for ensuring global existence. We first show, by way of a detailed example, how asymptotic information alone provides significant insight into the structure of global solutions to a nonlinear ordinary differential equation. Then we propose a method for providing this missing asymptotic data to a numerical solver, and show how the combined approach provides more detailed results than either method alone.

(Received September 28 2007)

(Revised January 11 2008)