Journal of Fluid Mechanics



Papers

Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows


S. J. SHERWIN a1 and H. M. BLACKBURN a2
a1 Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
a2 CSIRO Manufacturing and Infrastructure Technology, PO Box 56, Highett, Vic 3190, Australia

Article author query
sherwin sj   [Google Scholar] 
blackburn hm   [Google Scholar] 
 

Abstract

A straight tube with a smooth axisymmetric constriction is an idealized representation of a stenosed artery. We examine the three-dimensional instabilities and transition to turbulence of steady flow, steady flow plus an oscillatory component, and an idealized vascular pulsatile flow in a tube with a smooth 75 % stenosis using both linear stability analysis and direct numerical simulation. Steady flow undergoes a weak Coanda-type wall attachment and turbulent transition through a subcritical bifurcation, leading to hysteretic behaviour with respect to changes in Reynolds number. The pulsatile flows become unstable through a subcritical period-doubling bifurcation involving alternating tilting of the vortex rings that are ejected from the throat with each pulse. These tilted vortex rings rapidly break down through a self-induction mechanism within the confines of the tube. While the linear instability modes for pulsatile flow have maximum energy well downstream of the stenosis, we have established using direct numerical simulation that breakdown can gradually propagate upstream until it occurs within a few tube diameters of the constriction, in agreement with previous experimental observations. At the Reynolds numbers employed in the present study, transition is localized, with relaminarization occurring further downstream. A non-exhaustive investigation has also been undertaken into the receptivity of the axisymmetric shear layer in the idealized physiological pulsatile flow, with the results suggesting it has localized convective instability over part of the pulse cycle.

(Received August 2 2004)
(Revised December 13 2004)



Metrics