Compositio Mathematica



Motives of Uniruled 3-Folds


PEDRO LUIS DEL ANGEL a1 and STEFAN MÜLLERSTACH a1
a1 Universität Essen, Fachbereich 6, 45117 Essen, Germany. e-mail: mueller-strach@uni-essen.de, plar@xanum.uam.mx

Article author query
del angel pl   [Google Scholar] 
müllerstach s   [Google Scholar] 
 

Abstract

J. Murre has conjectured that every smooth projective variety X of dimension d admits a decomposition of the diagonal [delta]=p$_0$+…+p$_2d$ [set membership] CH$^d$(X × X) [otimes B: multiply sign in circle] Q such that the cycles p$_i$ are orthogonal projectors which lift the Künneth components of the identity map in étale cohomology. If this decomposition induces an intrinsic filtration on the Chow groups of X, we call it a Murre decomposition. In this paper we propose candidates for such projectors on 3-folds by using fiber structures. Using Mori theory, we prove that every smooth uniruled complex 3-fold admits a Murre decomposition.


Key Words: Chow groups; cohomology groups; Chow motive; extremal ray..