Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T06:47:53.866Z Has data issue: false hasContentIssue false

Functional and cortical adaptations to central vision loss

Published online by Cambridge University Press:  02 June 2005

SING-HANG CHEUNG
Affiliation:
Department of Psychology, University of Minnesota, Minneapolis
GORDON E. LEGGE
Affiliation:
Department of Psychology, University of Minnesota, Minneapolis

Abstract

Age-related macular degeneration (AMD), affecting the retina, afflicts one out of ten people aged 80 years or older in the United States. AMD often results in vision loss to the central 15–20 deg of the visual field (i.e. central scotoma), and frequently afflicts both eyes. In most cases, when the central scotoma includes the fovea, patients will adopt an eccentric preferred retinal locus (PRL) for fixation. The onset of a central scotoma results in the absence of retinal inputs to corresponding regions of retinotopically mapped visual cortex. Animal studies have shown evidence for reorganization in adult mammals for such cortical areas following experimentally induced central scotomata. However, it is still unknown whether reorganization occurs in primary visual cortex (V1) of AMD patients. Nor is it known whether the adoption of a PRL corresponds to changes to the retinotopic mapping of V1. Two recent advances hold out the promise for addressing these issues and for contributing to the rehabilitation of AMD patients: improved methods for assessing visual function across the fields of AMD patients using the scanning laser ophthalmoscope, and the advent of brain-imaging methods for studying retinotopic mapping in humans. For the most part, specialists in these two areas come from different disciplines and communities, with few opportunities to interact. The purpose of this review is to summarize key findings on both the clinical and neuroscience issues related to questions about visual adaptation in AMD patients.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D.L. & Horton, J.C. (2002). Shadows cast by retinal blood vessels mapped in primary visual cortex. Science 298, 572576.CrossRefGoogle Scholar
Adams, D.L. & Horton, J.C. (2003). A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. Journal of Neuroscience 23, 37713789.Google Scholar
Akutsu, H., Legge, G.E., Ross, J.A., & Schuebel, K. (1991). Psychophysics of reading. X. Effects of age-related changes in vision. Journal of Gerontology: Psychological Sciences 46, 325331.Google Scholar
Altpeter, E., Mackeben, M., & Trauzettel-Klosinski, S. (2000). The importance of sustained attention for patients with maculopathies. Vision Research 40, 15391547.CrossRefGoogle Scholar
Ambati, J., Ambati, B.K., Yoo, S.H., Ianchulev, S., & Adamis, A.P. (2003). Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies. Survey of Ophthalmology 48, 257293.CrossRefGoogle Scholar
Anderson, D.R. (2003). Standard perimetry. Ophthalmology Clinics of North America 16, 205212.CrossRefGoogle Scholar
Armaly, M.F. (1969). The size and location of the normal blind spot. Archives of Ophthalmology 81, 192201.CrossRefGoogle Scholar
Azzopardi, P. & Cowey, A. (1993). Preferential representation of the fovea in the primary visual cortex. Nature 361, 719721.CrossRefGoogle Scholar
Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S., & Hyde, J.S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine 25, 390397.CrossRefGoogle Scholar
Baseler, H.A., Brewer, A.A., Sharpe, L.T., Morland, A.B., Jägle, H., & Wandell, B.A. (2002). Reorganization of human cortical maps caused by inherited photoreceptor abnormalities. Nature Neuroscience 5, 364370.CrossRefGoogle Scholar
Bek, T. & Lund-Andersen, H. (1989). The influence of stimulus size on perimetric detection of small scotomata. Graefe's Archive for Clinical and Experimental Ophthalmology 227, 531534.CrossRefGoogle Scholar
Bender, M.B. & Furlow, L.T. (1945). Visual disturbances produced by bilateral lesions of the occipital lobes with central scotomas. Archives of Neurology and Psychiatry 53, 165170.CrossRefGoogle Scholar
Bergeron, A., Matsuo, S., & Guitton, D. (2003). Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts. Nature Neuroscience 6, 404413.CrossRefGoogle Scholar
Boothe, R.G., Dobson, V., & Teller, D.Y. (1985). Postnatal development of vision in human and nonhuman primates. Annual Review of Neuroscience 8, 495545.CrossRefGoogle Scholar
Bowers, A.R. (2000). Eye movements and reading with plus-lens magnifiers. Optometry and Vision Science 77, 2533.CrossRefGoogle Scholar
Brindley, G.S. & Lewin, W.S. (1968). The sensations produced by electrical stimulation of the visual cortex. Journal of Physiology 196, 479493.CrossRefGoogle Scholar
Brown, M.M., Brown, G.C., Sharma, S., Landy, J., & Bakal, J. (2002). Quality of life with visual acuity loss from diabetic retinopathy and age-related macular degeneration. Archives of Ophthalmology 120, 481484.CrossRefGoogle Scholar
Calford, M.B., Wang, C., Taglianetti, V., Waleszczyk, W.J., Burke, W., & Dreher, B. (2000). Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers. Journal of Physiology 524.2, 587602.CrossRefGoogle Scholar
Carman, G.J., Drury, H.A., & Van Essen, D.C. (1995). Computational methods for reconstructing and unfolding the cerebral cortex. Cerebral Cortex 5, 506517.CrossRefGoogle Scholar
Carrasco, M., Talgar, C.P., & Cameron, E.L. (2001). Characterizing visual performance fields: Effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spatial Vision 15, 6175.CrossRefGoogle Scholar
Casco, C., Campana, G., Grieco, A., Musetti, S., & Perrone, S. (2003). Hyper-vision in a patient with central and paracentral vision loss reflects cortical reorganization. Visual Neuroscience 20, 501510.CrossRefGoogle Scholar
Chang, T.S., Hay, D., & Courtright, P. (1999). Age-related macular degeneration in Chinese-Canadians. Canadian Journal of Ophthalmology 34, 266271.Google Scholar
Chino, Y.M. (1995). Adult plasticity in the visual system. Canadian Journal of Physiology and Pharmacology 73, 13231338.CrossRefGoogle Scholar
Chino, Y.M., Kaas, J.H., Smith, E.L., III, Langston, A.L., & Cheng, H. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Research 32, 789796.CrossRefGoogle Scholar
Chino, Y.M., Smith, E.L., III, Kaas, J.H., Sasaki, Y., & Cheng, H. (1995). Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats. Journal of Neuroscience 15, 24172433.Google Scholar
Chopdar, A., Chakravarthy, U., & Verma, D. (2003). Age related macular degeneration. British Medical Journal 326, 485488.CrossRefGoogle Scholar
Chung, S.T.L., Legge, G.E., & Cheung, S.-H. (2004). Letter-recognition and reading speed in peripheral vision benefit from perceptual learning. Vision Research 44, 695709.CrossRefGoogle Scholar
Crossland, M.D. & Rubin, G.S. (2002). The use of an infrared eyetracker to measure fixation stability. Optometry and Vision Science 79, 735739.CrossRefGoogle Scholar
Cummings, R.W., Whittaker, S.G., Watson, G.R., & Budd, J.M. (1985). Scanning characters and reading with a central scotoma. American Journal of Optometry and Physiological Optics 62, 833843.CrossRefGoogle Scholar
Dale, A.M. & Sereno, M.I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience 5, 162176.CrossRefGoogle Scholar
Daniel, P.M. & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology (Paris) 159, 203221.CrossRefGoogle Scholar
Darian-Smith, C. & Gilbert, C.D. (1994). Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368, 737740.CrossRefGoogle Scholar
Darian-Smith, C. & Gilbert, C.D. (1995). Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. Journal of Neuroscience 15, 16311647.Google Scholar
DeCarlo, D.K., Scilley, K., Wells, J., & Owsley, C. (2003). Driving habits and health-related quality of life in patients with age-related maculopathy. Optometry and Vision Science 80, 207213.CrossRefGoogle Scholar
Déruaz, A., Matter, M., Whatham, A.R., Goldschmidt, M., Duret, F., Issenhuth, M., & Safran, A.B. (2004). Can fixation instability improve text perception during eccentric fixation in patients with central scotomas? British Journal of Ophthalmology 88, 461463.Google Scholar
Déruaz, A., Whatham, A.R., Mermoud, C., & Safran, A.B. (2002). Reading with multiple preferred retinal loci: Implications for training a more efficient reading strategy. Vision Research 42, 29472957.CrossRefGoogle Scholar
DeYoe, E.A., Bandettini, P., Neitz, J., Miller, D., & Winans, P. (1994). Functional magnetic resonance imaging (FMRI) of the human brain. Journal of Neuroscience Methods 54, 171187.CrossRefGoogle Scholar
DeYoe, E.A., Carman, G.J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D., & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the U.S.A. 93, 23822386.CrossRefGoogle Scholar
Drury, H.A., Van Essen, D.C., Anderson, C.H., Lee, C.W., Coogan, T.A., & Lewis, J.W. (1996). Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system. Journal of Cognitive Neuroscience 8, 128.CrossRefGoogle Scholar
DuBois, R.M. & Cohen, M.S. (2000). Spatiotopic organization in human superior colliculus observed with fMRI. Neuroimage 12, 6370.CrossRefGoogle Scholar
Duncan, R.O. & Boynton, G.M. (2003). Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38, 659671.CrossRefGoogle Scholar
Dunzhu, S., Wang, F.S., Courtright, P., Liu, L., Tenzing, C., Noertjojo, K., Wilkie, A., Santangelo, M., & Bassett, K.L. (2003). Blindness and eye diseases in Tibet: Findings from a randomised, population based survey. British Journal of Ophthalmology 87, 14431448.CrossRefGoogle Scholar
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science 270, 305307.CrossRefGoogle Scholar
Engel, S.A., Glover, G.H., & Wandell, B.A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex 7, 181192.CrossRefGoogle Scholar
Engel, S.A., Rumelhart, D.E., Wandell, B.A., Lee, A.T., Glover, G.H., Chichilnisky, E.-J., & Shadlen, M.N. (1994). fMRI of human visual cortex. Nature 369, 525.CrossRefGoogle Scholar
Ergun, E., Maár, N., Radner, W., Barbazetto, I., Schmidt-Erfurth, U., & Stur, M. (2003). Scotoma size and reading speed in patients with subfoveal occult choroidal neovascularization in age-related macular degeneration. Ophthalmology 110, 6569.CrossRefGoogle Scholar
Eye Disease Prevalence Research Group. (2004a). Causes and prevalence of visual impairment among adults in the United States. Archives of Ophthalmology 122, 477485.Google Scholar
Eye Disease Prevalence Research Group. (2004b). Prevalence of age-related macular degeneration in the United States. Archives of Ophthalmology 122, 564572.Google Scholar
Fahle, M. & Schmid, M. (1988). Naso-temporal asymmetry of visual perception and of the visual cortex. Vision Research 28, 293300.CrossRefGoogle Scholar
Fine, E.M. & Peli, E. (1995). Scrolled and rapid serial visual presentation texts are read at similar rates by the visually impaired. Journal of the Optical Society of America A: Optics, Image Sciences, and Vision 12, 22862292.CrossRefGoogle Scholar
Fine, E.M. & Rubin, G.S. (1999). Reading with simulated scotomas: Attending to the right is better than attending to the left. Vision Research 39, 10391048.CrossRefGoogle Scholar
Fletcher, D.C. & Schuchard, R.A. (1997). Preferred retinal loci relationship to macular scotomas in a low-vision population. Ophthalmology 104, 632638.CrossRefGoogle Scholar
Fletcher, D.C., Schuchard, R.A., Livingstone, C.L., Crane, W.G., & Hu, S.Y. (1994). Scanning laser ophthalmoscope macular perimetry and applications for low vision rehabilitation clinicians. Low Vision and Vision Rehabilitation 7, 257265.Google Scholar
Fletcher, D.C., Schuchard, R.A., & Watson, G. (1999). Relative locations of macular scotomas near the PRL: Effect on low vision reading. Journal of Rehabilitation Research and Development 36, 356364.Google Scholar
Fox, P.T., Miezin, F.M., Allman, J.M., Van Essen, D.C., & Raichle, M.E. (1987). Retinotopic organization of human visual cortex mapped with positron-emission tomography. Journal of Neuroscience 7, 913922.Google Scholar
Fox, P.T., Mintun, M.A., Raichle, M.E., & Herscovitch, P. (1984). A noninvasive approach to quantitative functional brain mapping with H215O and positron emission tomography. Journal of Cerebral Blood Flow and Metabolism 4, 329333.CrossRefGoogle Scholar
Fox, P.T., Mintun, M.A., Raichle, M.E., Miezin, F.M., Allman, J.M., & Van Essen D.C. (1986). Mapping human visual cortex with positron emission tomography. Nature 323, 806809.CrossRefGoogle Scholar
Fox, P.T. & Raichle, M.E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences of the U.S.A. 83, 11401144.CrossRefGoogle Scholar
Fox, P.T., Raichle, M.E., Mintun, M.A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462464.CrossRefGoogle Scholar
Fuchs, W. (1938). Pseudo-fovea. In A Source Book of Gestalt Psychology, ed. & trans. Ellis, W.D., pp. 357365. London: Kegan Paul. (Original work published 1922)CrossRef
Fujii, G.Y., De Juan, E., Jr., Humayun, M.S., Sunness, J.S., Chang, T.S., & Rossi, J.V. (2003). Characteristics of visual loss by scanning laser ophthalmoscope microperimetry in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. American Journal of Ophthalmology 136, 10671078.CrossRefGoogle Scholar
Gilbert, C.D. (1998). Adult cortical dynamics. Physiological Reviews 78, 467485.Google Scholar
Gilbert, C.D. & Wiesel, T.N. (1992). Receptive field dynamics in adult primary visual cortex. Nature 356, 150152.CrossRefGoogle Scholar
Girard, P., Hupé, J.M., & Bullier, J. (2001). Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. Journal of Neurophysiology 85, 13281331.Google Scholar
Goldberg, M.E. & Wurtz, R.H. (1972a). Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology 35, 542559.Google Scholar
Goldberg, M.E. & Wurtz, R.H. (1972b). Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. Journal of Neurophysiology 35, 560574.Google Scholar
Guez, J.-E., Le Gargasson, J.-F., Rigaudière, F., & O'Regan, J.K. (1993). Is there a systematic location for the pseudo-fovea in patients with central scotoma? Vision Research 33, 12711279.Google Scholar
Hassan, S.E., Lovie-Kitchin, J.E., & Woods, R.L. (2002). Vision and mobility performance of subjects with age-related macular degeneration. Optometry and Vision Science 79, 697707.CrossRefGoogle Scholar
He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature 383, 334337.CrossRefGoogle Scholar
Heinen, S.J. & Skavenski, A.A. (1991). Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Experimental Brain Research 83, 670674.Google Scholar
Holmes, G. (1918). Disturbances of vision by cerebral lesions. British Journal of Ophthalmology 2, 353383.CrossRefGoogle Scholar
Holmes, G. (1919). The cortical localization of vision. British Medical Journal 2, 193199.CrossRefGoogle Scholar
Holmes, G. (1945). The organization of the visual cortex in man. Proceedings of the Royal Society B (London) 132, 348361.CrossRefGoogle Scholar
Holmes, G. & Lister, W.T. (1916). Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula. Brain 39, 3473.CrossRefGoogle Scholar
Horton, J.C. & Hoyt, W.F. (1991). The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Archives of Ophthalmology 109, 816824.CrossRefGoogle Scholar
Hsu, W.-M., Cheng, C.-Y., Liu., J.-H., Tsai, S.-Y., & Chou, P. (2004). Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: The Shihpai Eye Study. Ophthalmology 111, 6269.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1969). Anatomical demonstration of columns in the monkey striate cortex. Nature 221, 747750.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology 206, 419436.CrossRefGoogle Scholar
Issa, N.P., Trachtenberg, J.T., Chapman, B., Zahs, K.R., & Stryker, M.P. (1999). The critical period for ocular dominance plasticity in the Ferret's visual cortex. Journal of Neuroscience 19, 69656978.Google Scholar
Kaas, J.H. & Collins, C.E. (2003). Anatomic and functional reorganization of somatosensory cortex in mature primates after peripheral nerve and spinal cord injury. Advances in Neurology 93, 8795.Google Scholar
Kaas, J.H., Krubitzer, L.A., Chino, Y.M., Langston, A.L., Polley, E.H., & Blair, N. (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229231.CrossRefGoogle Scholar
Kelly, J.P., Weiss, A.H., Zhou, Q., Schmode, S., & Dreher, A.W. (2003). Imaging a child's fundus without dilation using a handheld confocal scanning laser ophthalmoscope. Archives of Ophthalmology 121, 391396.CrossRefGoogle Scholar
Krauzlis, R.J. (2004). Recasting the smooth pursuit eye movement system. Journal of Neurophysiology 91, 591603.Google Scholar
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.-M., Brady, T.J., & Rosen, B.R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the U.S.A. 89, 56755679.CrossRefGoogle Scholar
Legge, G.E., Ross, J.A., Isenberg, L.M., & LaMay, J.M. (1992). Psychophysics of reading. XII. Clinical predictors of low-vision reading speed. Investigative Ophthalmology and Visual Science 33, 677687.Google Scholar
Legge, G.E., Rubin, G.S., Pelli, D.G., & Schleske, M.M. (1985). Psychophysics of reading. II. Low vision. Vision Research 25, 253265.Google Scholar
Lei, H. & Schuchard, R.A. (1997). Using two preferred retinal loci for different lighting conditions in patients with central scotomas. Investigative Ophthalmology and Visual Science 38, 18121818.Google Scholar
Levi, D.M., Klein, S.A., & Aitsebaomo, A.P. (1985). Vernier acuity, crowding and cortical magnification. Vision Research 25, 963977.CrossRefGoogle Scholar
Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150157.CrossRefGoogle Scholar
Logothetis, N.K. & Wandell, B.A. (2004). Interpreting the BOLD signal. Annual Review of Physiology 66, 735769.CrossRefGoogle Scholar
Lott, L.A., Schneck, M.E., Haegerström-Portnoy, G., Brabyn, J.A., Gildengorin, G.L., & West, C.G. (2001). Reading performance in older adults with good acuity. Optometry and Vision Science 78, 316324.CrossRefGoogle Scholar
Lyon, D.C. & Kaas, J.H. (2002). Connectional evidence for dorsal and ventral V3, and other extrastriate areas in the prosimian primate, Galago garnetti. Brain, Behavior and Evolution 59, 114129.CrossRefGoogle Scholar
Markowitz, S.M. & Muller, C. (2004). Macular perimetry in low vision. Canadian Journal of Ophthalmology 39, 5660.CrossRefGoogle Scholar
McFadzean, R.M., Hadley, D.M., & Condon, B.C. (2002). The representation of the visual field in the occipital striate cortex. Neuro-Ophthalmology 27, 5578.CrossRefGoogle Scholar
Morland, A.B., Baseler, H.A., Hoffmann, M.B., Sharpe, L.T., & Wandell, B.A. (2001). Abnormal retinotopic representations in human visual cortex revealed by fMRI. Acta Psychologica 107, 229247.CrossRefGoogle Scholar
Munoz, D.P. (2002). Saccadic eye movements: Overview of neural circuitry. Progress in Brain Research 140, 8996.CrossRefGoogle Scholar
Nilsson, U.L., Frennesson, C., & Nilsson, S.E.G. (1998). Location and stability of a newly established eccentric retinal locus suitable for reading, achieved through training of patients with a dense central scotoma. Optometry and Vision Science 75, 873878.Google Scholar
Nilsson, U.L., Frennesson, C., & Nilsson, S.E.G. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research 43, 17771787.CrossRefGoogle Scholar
Obata, S., Obata, J., Das, A., & Gilbert, C.D. (1999). Molecular correlates of topographic reorganization in primary visual cortex following retinal lesions. Cerebral Cortex 9, 238248.CrossRefGoogle Scholar
Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.-G., Merkle, H., & Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the U.S.A. 89, 59515955.CrossRefGoogle Scholar
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L.E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature 392, 811814.CrossRefGoogle Scholar
Petre, K.L., Hazel, C.A., Fine, E.M., & Rubin, G.S. (2000). Reading with eccentric fixation is faster in inferior visual field than in left visual field. Optometry and Vision Science 77, 3439.CrossRefGoogle Scholar
Rovamo, J. & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 495510.Google Scholar
Rovamo, J., Virsu, V., & Näsänen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 5456.CrossRefGoogle Scholar
Rovner, B.W. & Casten, R.J. (2002). Activity loss and depression in age-related macular degeneration. American Journal of Geriatric Psychiatry 10, 305310.CrossRefGoogle Scholar
Sansbury, R.V., Skavenski, A.A., Haddad, G.M., & Steinman, R.M. (1973). Normal fixation of eccentric targets. Journal of the Optical Society of America 63, 612614.CrossRefGoogle Scholar
Schneider, K.A., Richter, M.C., & Kastner, S. (2004). Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: A high-resolution functional magnetic resonance imaging study. Journal of Neuroscience 24, 89758985.Google Scholar
Schuchard, R.A. & Fletcher, D.C. (1994). Preferred retinal locus. A review with applications in low vision rehabilitation. Low Vision and Vision Rehabilitation 7, 243256.Google Scholar
Schuchard, R.A., Naseer, S., & de Castro, K. (1999). Characteristics of AMD patients with low vision receiving visual rehabilitation. Journal of Rehabilitation Research and Development 36, 294302.Google Scholar
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R., & Tootell, R.B.H. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.CrossRefGoogle Scholar
Sharp, P.F. Manivannan, A. (1997). The scanning laser ophthalmoscope. Physics in Medicine and Biology 42, 951966.CrossRefGoogle Scholar
Sharp, P.F., Manivannan, A., Xu, A., & Forrester, J.V. (2004). The scanning laser ophthalmoscope–A review of its role in bioscience and medicine. Physics in Medicine and Biology 49, 10851096.CrossRefGoogle Scholar
Sunness, J.S., Applegate, C.A., Haselwood, D., & Rubin, G.S. (1996). Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. Ophthalmology 103, 14581466.CrossRefGoogle Scholar
Sunness, J.S., Gonzalez-Baron, J., Applegate, C.A., Bressler, N.M., Tian, Y., Hawkins, B., Barron, Y., & Bergman, A. (1999). Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. Ophthalmology 106, 17681779.CrossRefGoogle Scholar
Sunness, J.S., Liu, T., & Yantis, S. (2004). Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. Ophthalmology 111, 15951598.CrossRefGoogle Scholar
Sunness, J.S., Schuchard, R.A., Shen, N., Rubin, G.S., Dagnelie, G., & Haselwood, D.M. (1995). Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. Investigative Ophthalmology and Visual Science 36, 18631874.Google Scholar
Timberlake, G.T., Mainster, M.A., Peli, E., Augliere, R.A., Essock, E.A., & Arend, L.E. (1986). Reading with a macular scotoma. I. Retinal location of scotoma and fixation area. Investigative Ophthalmology and Visual Science 27, 11371147.Google Scholar
Timberlake, G.T., Mainster, M.A., Webb, R.H., Hughes, G.W., & Trempe, C.L. (1982). Retinal localization of scotomata by scanning laser ophthalmoscopy. Investigative Ophthalmology and Visual Science 22, 9197.Google Scholar
Tootell, R.B.H., Switkes, E., Silverman, M.S., & Hamilton, S.L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience 8, 15311568.Google Scholar
Turano, K.A., Broman, A.T., Bandeen-Roche, K., Munoz, B., Rubin, G.S., West, S.K., & the SEE Project Team. (2004). Association of visual field loss and mobility performance in older adults: Salisbury Eye Evaluation Study. Optometry and Vision Science 81, 298307.CrossRefGoogle Scholar
Virsu, V. & Rovamo, J. (1979). Visual resolution, contrast sensitivity, and the cortical magnification factor. Experimental Brain Research 37, 475494.Google Scholar
Wandell, B.A., Chial, S., & Backus, B.T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience 12, 739752.CrossRefGoogle Scholar
Wandell, B.A., Engel, S.A., & Hel-Or, H.Z. (1996). Creating images of the flattened cortical sheet. Investigative Ophthalmology and Visual Science 37, S1081.Google Scholar
Webb, R.H. & Hughes, G.W. (1981). Scanning laser ophthalmoscope. IEEE Transactions on Biomedical Engineering 28, 488492.CrossRefGoogle Scholar
Webb, R.H., Hughes, G.W., & Pomerantzeff, O. (1980). Flying spot TV ophthalmoscope. Applied Optics 19, 29912997.CrossRefGoogle Scholar
Wertheim, T. (1980). Peripheral visual acuity: Th. Wertheim, trans. Dunsky, I.L. American Journal of Optometry and Physiological Optics 57, 915924. (Original work published 1891).CrossRefGoogle Scholar
Westcott, M.C., Garway-Heath, D.F., Fitzke, F.W., Kamal, D., & Hitchings, R.A. (2002). Use of high spatial resolution perimetry to identify scotomata not apparent with conventional perimetry in the nasal field of glaucomatous subjects. British Journal of Ophthalmology 86, 761766.CrossRefGoogle Scholar
Whittaker, S.G., Budd, J., & Cummings, R.W. (1988). Eccentric fixation with macular scotoma. Investigative Ophthalmology and Visual Science 29, 268278.Google Scholar
Wilson, H.R., Levi, D., Maffei, L., Rovamo, J., & DeValois, R. (1990). The perception of form: Retina to striate cortex. In Visual Perception: The Neurophysiological Foundations, ed. Spillmann, L. & Werner, J.S., Chap. 10. San Diego, California: Academic Press.
Wurtz, R.H. & Goldberg, M.E. (1972a). Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. Journal of Neurophysiology 35, 575586.Google Scholar
Wurtz, R.H. & Goldberg, M.E. (1972b). Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. Journal of Neurophysiology 35, 587596.Google Scholar