Journal of Fluid Mechanics



Papers

Validity domain of the Benney equation including the Marangoni effect for closed and open flows


B. SCHEID a1a2, C. RUYER-QUIL a2, U. THIELE a3, O. A. KABOV a1a4, J. C. LEGROS a1 and P. COLINET a1
a1 Service de Chimie-Physique E.P., Université Libre de Bruxelles C.P. 165/62, 1050 Brussels, Belgium bscheid@ulb.ac.be
a2 Laboratoire FAST, UMR 7608, CNRS, Universités P. et M. Curie et Paris Sud, Bât. 502, Campus Universitaire, 91405 Orsay Cedex, France ruyer@fast.u-psud.fr
a3 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden, Germany thiele@mpipks-dresden.mpg.de
a4 Institute of Thermophysics SB RAS, 630090, Novosibirsk, Russia

Article author query
scheid b   [Google Scholar] 
ruyer-quil c   [Google Scholar] 
thiele u   [Google Scholar] 
kabov oa   [Google Scholar] 
legros jc   [Google Scholar] 
colinet p   [Google Scholar] 
 

Abstract

The Benney equation including thermocapillary effects is considered to study a liquid film flowing down a homogeneously heated inclined wall. The link between the finite-time blow-up of the Benney equation and the absence of the one-hump travelling-wave solution of the associated dynamical system is accurately demonstrated in the whole range of linearly unstable wavenumbers. Then the blow-up boundary is tracked in the whole space of parameters accounting for flow rate, surface tension, inclination and thermocapillarity. In particular, the latter two effects can strongly reduce the validity range of the Benney equation. It is also shown that the subcritical bifurcation found for falling films with the Benney equation is related to the blow-up of solutions and is unphysical in all cases, even with the thermocapillary effect though in contrast to horizontally heated films. The accuracy of bounded solutions of the Benney equation is determined by comparison with a reference weighted integral boundary layer model. A distinction is made between closed and open flow conditions, when calculating travelling-wave solutions; the former corresponds to the conservation of mass and the latter to the conservation of flow rate. The open flow condition matches experimental conditions more closely and is explored for the first time through the associated dynamical system. It yields bounded solutions for larger Reynolds numbers than the closed flow condition. Finally, solutions that are conditionally bounded are found to be unstable to disturbances of larger periodicity. In this case, coalescence is the pathway yielding finite-time blow-up.

(Published Online March 9 2005)
(Received September 3 2003)
(Revised October 28 2004)



Metrics
Related Content