Mathematical Proceedings of the Cambridge Philosophical Society



A bound for the number of automorphisms of an arithmetic Riemann surface


MIKHAIL BELOLIPETSKY a1 and GARETH A. JONES a2
a1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia. e-mail: mbel@math.nsc.ru
a2 Faculty of Mathematical Studies, University of Southampton, Southampton, SO17 1BJ. e-mail: gaj@maths.soton.ac.uk

Article author query
belolipetsky m   [Google Scholar] 
jones ga   [Google Scholar] 
 

Abstract

We show that for every $g\geq 2$ there is a compact arithmetic Riemann surface of genus $g$ with at least $4(g-1)$ automorphisms, and that this lower bound is attained by infinitely many genera, the smallest being 24.

(Received December 16 1999)
(Revised December 2 2003)