Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T11:15:28.969Z Has data issue: false hasContentIssue false

Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room

Published online by Cambridge University Press:  19 September 2008

David A. Newcombe
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA Environmental Sciences Program, University of Idaho Coeur d'Alene, 1000 W. Hubbard Avenue, Suite 242, Coeur d'Alene, ID 83814, USA e-mail: kjvenkat@jpl.nasa.gov
Myron T. La Duc
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Parag Vaishampayan
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Kasthuri Venkateswaran
Affiliation:
Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Abstract

In an effort to minimize the probability of forward contamination of pristine extraterrestrial environments, the National Aeronautics and Space Administration requires that all US robotic spacecraft undergo assembly, testing and launch operations (ATLO) in controlled clean-room environments. This study examines the impact of ATLO activity on the microbial diversity and overall bioburden contained within the air of the clean-room facility in which the Mars Exploration Rovers (MERs) underwent final preparations for launch. Air samples were collected from several facility locations and traditional culture-based and molecular methodologies were used to measure microbial burden and diversity. Surprisingly, the greatest estimates of airborne bioburden, as derived from ATP content and cultivation assays, were observed prior to the commencement of MER ATLO activities. Furthermore, airborne microbial diversity gradually declined from the initiation of ATLO on through to launch. Proteobacterial sequences were common in 16S rDNA clone libraries. Conspicuously absent were members of the Firmicutes phylum, which includes the genus Bacillus. In previous studies, species of this genus were repeatedly isolated from the surfaces of spacecraft and clean-room assembly facilities. Increased cleaning and maintenance initiated immediately prior to the start of ATLO activity could explain the observed declines in both airborne bioburden and microbial diversity.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahearn, D.G., Crow, S.A., Simmons, R.B., Price, D.L., Mishra, S.K. & Pierson, D.L. (1997). Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics. Curr. Microbiol. 35, 305308.CrossRefGoogle Scholar
Anonymous (1980). NASA standard procedures for the microbiological examination of space hardware. In Jet Propulsion Laboratory Communication, National Aeronautical and Space Administration. Pasadena, CA.Google Scholar
Appelbaum, J. & Flood, D.J. (1990). Solar-Radiation on Mars. Sol. Energy 45, 353363.Google Scholar
Aviation-Safety (2004). More research needed on the effects of air quality on airliner cabin occupants. Report to the subcommittee on Aviation, pp. 161. Washinton, DC: United States General Accounting Office.Google Scholar
Castro, V.A., Thrasher, A.N., Healy, M., Ott, C.M. & Pierson, D.L. (2004). Microbial characterization during the early habitation of the International Space Station. Microb. Ecol. 47, 119126.CrossRefGoogle ScholarPubMed
Christensen, E.A., Gerner-Smidt, P. & Kristensen, H. (1991). Radiation resistance of clinical Acinetobacter spp.: a need for concern? J. Hosp. Infect. 18, 8592.CrossRefGoogle ScholarPubMed
Coenye, T. & Vandamme, P. (2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5, 719729.CrossRefGoogle ScholarPubMed
Crawford, R.L. (2005). Microbial diversity and its relationship to planetary protection. Appl. Environ. Microbiol. 71, 41634168.CrossRefGoogle ScholarPubMed
Favero, M.S., Puleo, J.R., Marshall, J.H. & Oxborrow, G.S. (1966). Comparative levels and types of microbial contamination detected in industrial clean rooms. Appl. Microbiol. 14, 539551.CrossRefGoogle ScholarPubMed
Good, I.J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237264.CrossRefGoogle Scholar
Heck, J.K., van Belle, G. & Simberloff, D. (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 14591461.CrossRefGoogle Scholar
Jawad, A., Snelling, A.M., Heritage, J. & Hawkey, P.M. (1998). Exceptional desiccation tolerance of Acinetobacter radioresistens. J. Hosp. Infect. 39, 235240.Google Scholar
Kempf, M.J., Chen, F., Kern, R. & Venkateswaran, K. (2005). Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5, 391405.CrossRefGoogle ScholarPubMed
Kesavan, J., Carlile, D., Doherty, R.W., Hottell, A.K. & Sutton, T. (2003). Characteristics and sampling efficiencies of aerosol samplers manufactured by Mesosystem Technology, Inc., pp. ADA415715. A. P. G. Edgewood Chemical Biological Center, Maryland, Research and Technology Directorate: Defence Technical Information Center.Google Scholar
Kramer, A., Schwebke, I. & Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 130137.Google Scholar
La Duc, M.T., Dekas, A., Osman, S., Moissl, C., Newcombe, D. & Venkateswaran, K. (2007a). Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 73, 26002611.CrossRefGoogle ScholarPubMed
La Duc, M.T., Kern, R. & Venkateswaran, K. (2004a). Microbial monitoring of spacecraft and associated environments. Microbial. Ecol. 47, 150158.CrossRefGoogle ScholarPubMed
La Duc, M.T., Nicholson, W., Kern, R. & Venkateswaran, K. (2003). Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ. Microbiol. 5, 977985.Google Scholar
La Duc, M.T., Satomi, M., Agata, N. & Venkateswaran, K. (2004b). gyrB as a phylogenetic discriminator for members of the Bacillus anthracis-cereus-thuringiensis group. J. Microbiol. Methods 56, 383394.Google Scholar
La Duc, M., Stucker, T. & Venkateswaran, K. (2007b). Molecular bacterial diversity and bioburden of commercial airliner cabin air. Can. J. Microbiol. 53, 12591271.CrossRefGoogle ScholarPubMed
Lane, D.J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, ed. Stackebrandt, E. & Goodfellow, M., pp. 115163. John Wiley & Sons: New York, NY.Google Scholar
Lawley, B., Ripley, S., Bridge, P. & Convey, P. (2004). Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol. 70, 59635972.CrossRefGoogle ScholarPubMed
Ledrich, M.L., Stemmler, S., Laval-Gilly, P., Foucaud, L. & Falla, J. (2005). Precipitation of silver-thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34. Biometals 18, 643650.CrossRefGoogle ScholarPubMed
Lozupone, C., Hamady, M. & Knight, R. (2006). UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371.Google Scholar
Lozupone, C. & Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 82288235.CrossRefGoogle ScholarPubMed
Moissl, C., Bruckner, J. & Venkateswaran, K. (2008). Archaeal community analysis of spacecraft assembly facilities. Intern. Soc. Microbial. Ecol. 2, 115119.Google Scholar
Moissl, C., Hosoya, N., Bruckner, J., Stuecker, T., Roman, M. & Venkateswaran, K. (2007a). Molecular microbial community structure of the regenerative enclosed life support module simulator (REMS) air system. Int. J. Astrobiol. 6, 131145.CrossRefGoogle Scholar
Moissl, C., La Duc, M.T., Osman, S., Dekas, A.E. & Venkateswaran, K. (2007b). Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol. Ecol. 61, 509521.CrossRefGoogle ScholarPubMed
NASA-KSC (1999). Launch Site Requirement Planning Group, Facilities handbook of Payload Hazardous Servicing Facility (PHSF), K-STSM-14.1.15 rev D. NASA-KSC: KSC, Cape Canaveral, FL.Google Scholar
Newcombe, D.A., Schuerger, A.C., Benardini, J.N., Dickinson, D., Tanner, R. & Venkateswaran, K. (2005). Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl. Environ. Microbiol. 71, 81478156.CrossRefGoogle ScholarPubMed
Osman, S., Duc, M.T.L., Dekas, A., Newcombe, D. & Venkateswaran, K. (2008a). Microbial bioburden and diversity of commercial airline cabin air during short- and long-duration of travel. ISME J. 2, 482497.CrossRefGoogle Scholar
Osman, S., Peeters, Z., La Duc, M.T., Mancinelli, R., Ehrenfreund, P. & Venkateswaran, K. (2008b). Effect of shadowing on the survival of bacteria to conditions simulating Martian atmosphere and UV-radiation. Appl. Environ. Microbiol. 74, 959970.Google Scholar
Oxborrow, G.S., Fields, N.D., Puleo, J.R. & Herring, C.M. (1975). Quantitative relationship between airborne viable and total particles. Health Lab. Sci. 12, 4751.Google ScholarPubMed
Patel, M.R., Zarnecki, J.C. & Catling, D.C. (2002). Ultraviolet radiation on the surface of Mars and the Beagle 2 UV sensor. Planetary Space Sci. 50, 915927.CrossRefGoogle Scholar
Pierson, D.L. (2001). Microbial contamination of spacecraft. Gravit. Space Biol. Bull. 14, 16.Google ScholarPubMed
Poirel, L., Figueiredo, S., Cattoir, V., Carattoli, A. & Nordmann, P. (2008). Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 52, 12521256.CrossRefGoogle ScholarPubMed
Puleo, J.R., Fields, N.D., Bergstrom, S.L., Oxborrow, G.S., Stabekis, P.D. & Koukol, R. (1977). Microbiological profiles of the Viking spacecraft. Appl. Environ. Microbiol. 33, 379384.CrossRefGoogle ScholarPubMed
References, S., Daubaras, D., Hershberger, C., Kitano, K. & Chakrabarty, A. (1995). Sequence analysis of a gene cluster involved in metabolism of 2, 4, 5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100. Appl. Environ. Microbiol. 61, 12791289.Google Scholar
Rontó, G., Bérces, A., Lammer, H., Cockell, C.S., Molina-Cuberos, G.J., Patel, M.R. & Selsis, F. (2003). Solar UV Irradiation Conditions on the Surface of Mars. Photochem. Photobiol. 77, 3440.CrossRefGoogle ScholarPubMed
Rossello-Mora, R. & Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 3967.CrossRefGoogle ScholarPubMed
Ruimy, R., Breittmayer, V., Elbaze, P., Lafay, B., Boussemart, O., Gauthier, M. & Christen, R. (1994). Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int. J. Syst. Bacteriol. 44, 416426.CrossRefGoogle ScholarPubMed
Rummel, J.D. (1992). Planetary Protection Policy (U.S.A.). Adv. Space Res. 12, 129131.CrossRefGoogle ScholarPubMed
Satomi, M., La Duc, M.T. & Venkateswaran, K. (2004). Description of Bacillus safensis, sp. nov. a novel spore-forming bacterium that persists in spacecraft and associated environments. In General Meeting of the American Society for Microbiology. New Orleans, LA: American Society for Microbiology.Google Scholar
Schloss, P.D. & Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71, 15011506.Google Scholar
Simmons, R.B., Price, D.L., Noble, J.A., Crow, S.A. & Ahearn, D.G. (1997). Fungal colonization of air filters from hospitals. Am. Ind. Hyg. Assoc. J. 58, 900904.CrossRefGoogle ScholarPubMed
Stackebrandt, E. & Goebel, B.M. (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44, 846849.CrossRefGoogle Scholar
Steinle, P., Stucki, G., Stettler, R. & Hanselmann, K.W. (1998). Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl. Environ. Microbiol. 64, 25662571.Google Scholar
Swofford, D. (1990). PAUP: Phylogenetic analysis using parsimony, version 2.0. Computer program distributed by the Illinois Natural Survey, Champaign, IL.Google Scholar
Valadez, V.A., Thrasher, A.N., Ott, C.M. & Pierson, D.L. (2002). Evaluation of bacterial diversity aboard the International Space Station. In General Meeting of the American Society for Microbiology, Salt Lake City, UT.Google Scholar
Venkateswaran, K., Hattori, N., La Duc, M.T. & Kern, R. (2003). ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth. 52, 367377.CrossRefGoogle ScholarPubMed
Venkateswaran, K., Satomi, M., Chung, S., Kern, R., Koukol, R., Basic, C. & White, D. (2001). Molecular microbial diversity of a spacecraft assembly facility. Syst. Appl. Microbiol. 24, 311320.CrossRefGoogle ScholarPubMed
Verdenelli, M.C., Cecchini, C., Orpianesi, C., Dadea, G.M. & Cresci, A. (2003). Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94, 915.CrossRefGoogle ScholarPubMed
Walzer, G., Rosenberg, E. & Ron, E.Z. (2006). The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ. Microbiol. 8, 10261032.CrossRefGoogle ScholarPubMed