Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T15:27:52.129Z Has data issue: false hasContentIssue false

Amino acid synthesis in Europa's subsurface environment

Published online by Cambridge University Press:  27 October 2008

Sam H. Abbas
Affiliation:
Chemistry Department, Palomar Community College, San Marcos, CA 92069, USA e-mail: sabbas@palomar.edu
Dirk Schulze-Makuch
Affiliation:
School of Earth & Environmental Sciences, Washington State University, Pullman, WA 99164, USA

Abstract

It has been suggested that Europa's subsurface environment may provide a haven for prebiotic evolution and the development of exotic biotic systems. The detection of hydrogen peroxide, sulfuric acid, water, hydrates and related species on the surface, coupled with observed mobility of icebergs, suggests the presence of a substantial subsurface liquid reservoir that actively exchanges materials with the surface environment. The atmospheric, surface and subsurface environments are described with their known chemistry. Three synthetic schemes using hydrogen peroxide, sulfuric acid and hydrocyanic acid leading to the production of larger biologically important molecules such as amino acids are described. Metabolic pathways based on properties of the subsurface ocean environment are detailed. Tidal heating, osmotic gradients, chemical cycling, as well as hydrothermal vents, provide energy and materials that may support a course of prebiotic evolution leading to the development or sustenance of simple biotic systems. Putative organisms may employ metabolic pathways based on chemical oxidation–reduction cycles occurring in the putative subsurface ocean environment.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, O. & Schulze Makuch, D. (2002). Acetylene-based pathways for prebiotic evolution on Titan. In Proc. Second Eur Workshop on Exo/Astrobiology, Graz, Austria, ESA SP-518, p. 345348.Google Scholar
Anderson, J.D., Lau, E.L., Sjogren, W.L., Schubert, G. & Moore, W.B. (1997). Europa's differential internal structure: inferences from two Galileo encounters. Science 276, 12361239.CrossRefGoogle ScholarPubMed
Anderson, J.D.Schubert, G., Jacobson, R.A., Lau, E.L., Moore, W.B. & Sjogren, W.L. (1998). Europa's differential internal structure: inferences from four Galileo encounters. Science 281, 20192022.Google Scholar
Bains, W. (2004). Many chemistries could be used to build living systems. Astrobiology 4, 137167.Google Scholar
Bennett, J., Donahue, M., Schneider, N. & Voit, M. (2007). The Cosmic Perspective, 4th edn. Addison Wesley, San Francisco, CA.Google Scholar
Brown, M. (2001). Potassium in Europa's atmosphere. Icarus 151, 190195.CrossRefGoogle Scholar
Brown, R.H., Cruikshank, D.P., Tokunaga, A.T., Smith, R.G. & Clark, R.N. (1988). Search for volatiles on icy satellites I. Europa. Icarus 74, 262265.Google Scholar
Brown, T., Le May, H.E. & Bursten, B.E. (2002). Chemistry, The Central Science, 9th edn. Prentice-Hall, Upper Saddle River, NJ.Google Scholar
Bugaenko, L.T., Kuzmin, M.G. & Polak, L.S. (1993). High-Energy Chemistry. Prentice-Hall, New York, NY.Google Scholar
Carlson, R.W. et al. (1999a). Hydrogen peroxide on the surface of Europa. Science 283, 20622064.Google Scholar
Carlson, R.W., Johnson, R.E. & Anderson, M.S. (1999b). Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 9799.CrossRefGoogle ScholarPubMed
Carlson, R.W., Anderson, M.S., Johnson, R.E., Schulman, M.B. & Yavrouian, A.H. (2002). Sulfuric acid production on Europa: The radiolysis of sulfur in water ice. Icarus 157, 456463.Google Scholar
Carr, M.H. et al. (1998). Evidence for a subsurface ocean on Europa. Nature 391, 363365.Google Scholar
Chandler, D. & Hecht, J. (2002). Cracking Europa's icy mask. New scientist 176, 2425.Google Scholar
Chela-Flores, J. (2001). The New Science of Astrobiology: from Genesis of the Living Cell to Evolution of Intelligent Behavior in the Universe. Kulwer Academic Publishers, Boston, MA.CrossRefGoogle Scholar
Chyba, C.F. (2000). Energy for microbial life on Europa. Nature 403, 381382.Google Scholar
Cooper, P., Johnson, R. & Quickenden, T. (2003). A review of possible optical absorption features of oxygen molecules in the icy surfaces of outer solar system bodies. Planet. Space Sci. 51, 183192.Google Scholar
Dawes, E.A. (1986). Microbial Energetics. Blackie & Son Ltd, New York, NY.Google Scholar
Dalton, J.B. III (2003). Spectral behavior of hydrated sulfate salts: Implications for Europa mission spectrometer design. Astrobiology 3, 771784.Google Scholar
Dean, J.A. (1992). Lange's Handbook of Chemistry, 14th edn. McGraw-Hill, New York, NY.Google Scholar
Figueredo, P., Greeley, R., Neuer, S., Irwin, L. & Schulze-Makuch, D. (2003). Locating potential biosignatures on Europa from surface geology observations. Astrobiology 3, 851861.Google Scholar
Greeley, R. et al. (1998). Europa: initial Galileo geological observations. Icarus. 135, 424.CrossRefGoogle Scholar
Greeley, R. et al. (2000). Geologic mapping of Europa. J. Geophys. Res. 105, 22 55922 578.CrossRefGoogle Scholar
Greenberg, R. (2002). Tides and the biosphere of Europa. American Scientist 90, 4855.Google Scholar
Greenberg, R., Tufts, B.R., Geissler, P. & Hoppa, G.V. (2002). Europa's crust and ocean: How tides create a potentially habitable physical setting. In Astrobiology: The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C. Springer, Berlin, pp. 111124.Google Scholar
Greenberg, R. & Geissler, P. (2002). Europa's dynamic icy crust. Meteor. Planet. Sci. 37, 16851710.Google Scholar
Greenberg, R., Leake, M., Hoppa, G.V. & Tufts, B.R. (2003). Pits and uplifts on Europa. Icarus 161, 102126.Google Scholar
Hall, D.T., Strobel, D.F., Feldman, P.D., McGrath, M.A. & Weaver, H.A. (1995). Detection of an atmosphere on Jupiter's moon Europa. Nature, 373, 677679.Google Scholar
Herbert, R.A. & Codd, G.A. (1986). Microbes in Extreme Environment. Academic Press, Orlando, FL.Google Scholar
Irwin, L.N. & Schulze-Makuch, D. (2003). Strategy for Modeling Putative Multilevel Ecosystems on Europa. Astrobiology 3, 813821.Google Scholar
Jakosky, B. (1998). The Search for Life on Other Planets. Cambridge University Press, Cambridge.Google Scholar
Johnson, R.E., Killen, R.M., Waite, J.H. Jr. & Lewis, W.S. (1998). Europa's surface composition and sputter-produced ionosphere. Geophys. Res. Lett. 25, 32573260.Google Scholar
Johnson, R.E., Leblanc, F., Yakshinskiy, B. & Madey, T. (2002). Energy distributions for desorption of sodium and potassium from ice: The Na/K ratio of Europa. Icarus 156, 136142.CrossRefGoogle Scholar
Johnson, R.E., Quickenden, T.I., Cooper, P.D., Mckinley, A.J. & Freeman, C.G. (2003). The production of oxidants in Europa's surface. Astrobiology 3, 823850.Google Scholar
JPL-Galileo website http://www2.jpl.nasa.gov/galileo/images/topTen01.html [last accessed 27 September, 2007].Google Scholar
Kivelson, M.G., Khurana, K.K., Russell, C.T., Volwerk, M., Walker, R.J. & Zimmer, C. (2000). Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science 289, 13401343.Google Scholar
Leblanc, F., Johnson, R. & Brown, M. (2002). Europa's sodium atmosphere: an ocean source? Icarus 159, 132144.Google Scholar
Levine, I.N. (1988). Physical Chemistry, 3rd edn. McGraw-Hill, New York, NY.Google Scholar
Lovley, D.R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259287.Google Scholar
Marion, G.M., Fritsen, C.H., Eicken, H. & Payne, M.C. (2003). The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogs. Astrobiology 3, 785811.Google Scholar
Masterton, W.L. & Hurley, C.N. (2001). Chemistry: Principles and Reactions, 4th edn. Harcourt College Publishers, San Antonio, TX.Google Scholar
McCord, T.B. et al. (1998). Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. Science 280, 12421245.Google Scholar
McMurry, J. (2004). Organic Chemistry, 6th edn. Thomson, Brooks-Cole, New York, NY.Google Scholar
Miller, S.L. (1998). The endogenous synthesis of organic compounds. In The Molecular Origins of Life, ed. Brack, A. Cambridge University Press, New York, NY, pp. 365385.Google Scholar
Pappalardo, R.T. et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104, 24 01524 055.Google Scholar
Schulze-Makuch, D. & Irwin, L.N. (2002). Energy cycling and hypothetical organisms in Europa's ocean. Astrobiology 2, 105121.CrossRefGoogle ScholarPubMed
Solomons, G. (1996). Organic Chemistry, 6th edn. Wiley, NewYork, NY.Google Scholar
Strazzulla, G. (1998). Chemistry of ice induced by energetic charged particles. In Solar System Ices, ed. Schmitt, B. Kluwer Academic, The Netherlands.Google Scholar
Tang, B.L. (2007). A case for immunological approaches in detection and investigation of alien life. Int. J. Astrobiol. 6(1), 1117.CrossRefGoogle Scholar
Van Dover, C.L., Cann, J.R., Cavanaugh, C., Chamberlain, S., Delaney, J.R., Janecky, D., Imhoff, J. & Tyson, J.A. (1994). Light at deep sea hydrothermal vents. EOS Trans. Am. Geophys. Union 75(4), 4445.CrossRefGoogle Scholar