Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T00:30:40.978Z Has data issue: false hasContentIssue false

Two new species of flatworms (Platyhelminthes: Polycladida) from the continental slope of the Gulf of Mexico

Published online by Cambridge University Press:  08 August 2008

Sigmer Y. Quiroga
Affiliation:
Department of Zoology, University of New Hampshire, Durham, NH 03824, USA
D. Marcela Bolaños
Affiliation:
Department of Zoology, University of New Hampshire, Durham, NH 03824, USA
Marian K. Litvaitis*
Affiliation:
Department of Zoology, University of New Hampshire, Durham, NH 03824, USA
*
Correspondence should be addressed to: Marian K. Litvaitis, Department of Zoology, University of New Hampshire, Durham, NH 03824, USA email: m.litvaitis@unh.edu

Abstract

Two new species of polyclads are described from the continental slope of the Gulf of Mexico. Specimens of Didangia carneyi sp. nov. and Oligocladus bathymodiensis sp. nov. were collected from the Louisiana slope at 610 m and 650 m, respectively. Didangia carneyi sp. nov. was collected from a natural wood fall, and is characterized by the presence of tentacular and cerebral eyes, an interpolated prostatic vesicle provided with two muscular accessory prostatic vesicles, and large glandular cells that surround the male atrium. Oligocladus bathymodiensis sp. nov. has a mouth anterior to the brain, a few cerebral and pseudotentacular eyes, four pairs of intestinal branches, and a ventral anal pore. Specimens of this species were collected on the margin of a hypersaline cold seep in association with mussels of Bathymodiolus childressi. All type material is deposited at the Field Museum of Natural History, Chicago, Illinois, USA.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bock, S. (1913) Studien über Polycladen. Zoologiska Bidrag fran Uppsala 2, 29344.Google Scholar
Cary, S.C., Fisher, C.R. and Felbeck, H. (1988) Mussel growth supported by methane as sole carbon and energy source. Science 240, 7880.CrossRefGoogle ScholarPubMed
Childress, J.J., Fisher, C.R., Brooks, J.M., Kennicutt, M.C., Bidigar, R. and Anderson, A.E. (1986) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233, 13061308.CrossRefGoogle ScholarPubMed
Chintala, M.M. and Kennedy, V.S. (1993) Reproduction of Stylochus ellipticus (Platyhelminthes: Polycladida) in response to temperature, food, and presence or absence of a partner. Biological Bulletin. Marine Biological Laboratory, Woods Hole 185, 373387.CrossRefGoogle ScholarPubMed
Christensen, D.J. (1973) Prey preference of Stylochus ellipticus in Chesapeake Bay. Proceedings of the National Shellfish Association 63, 3538.Google Scholar
Cordes, E.E., Carney, S.L., Hourdez, S., Carney, R.S., Brooks, J.M. and Fisher, C.R. (2007) Cold seeps of the deep Gulf of Mexico: community structure and biogeographic comparisons to Atlantic equatorial belt seep communities. Deep-Sea Research I 54, 637–63.CrossRefGoogle Scholar
Faubel, A. (1983) The Polycladida, Turbellaria. Proposal and establishment of a new system. Part I. The Acotylea. Mitteilungen des Hamburgischen Zoologischen Museums und Instituts 80, 17121.Google Scholar
Faubel, A. (1984) The Polycladida, Turbellaria. Proposal and establishment of a new system. Part II. The Cotylea. Mitteilungen des Hamburgischen Zoologischen Museums und Instituts 81, 189259.Google Scholar
Hadenfeldt, D. (1929) Das Nervensystem von Stylochoplana maculata und Notoplana atomata. Zeitschrift für Wissenschaftliche Zoology 133, 586638.Google Scholar
Hooge, M. and Newman, L.J. (in press) Turbellarians of the Gulf of Mexico. In Felder, D.L. (ed.) Gulf of Mexico origins, waters, and biota—biodiversity. College Station: Texas A & M University Press.Google Scholar
Hyman, L.H. (1940) The polyclad flatworms of the Atlantic coast of the United States and Canada. Proceedings of the United States National Museum 89, 449495.CrossRefGoogle Scholar
Hyman, L.H. (1954) Free-living flatworms (Turbellaria) of the Gulf of Mexico. Fishery Bulletin of the Fish and Wildlife Service 55, 301302.Google Scholar
Hyman, L.H. (1955a) A further study of the polyclad flatworms of the West Indian region. Bulletin of Marine Science of the Gulf and Caribbean 5, 259268.Google Scholar
Hyman, L.H. (1955b) Some polyclad flatworms from the West Indies and Florida. Proceedings of the United States National Museum 104, 115150.CrossRefGoogle Scholar
Kennicutt, M.C., Brooks, J.M., Bidigare, R.R., Fay, R.R., Wade, T.L. and MacDonald, D.J. (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature 317, 351353.CrossRefGoogle Scholar
Kennicutt, M.C., Brooks, J.M., Bidigare, R.R. and Denoux, G.J. (1988) Gulf of Mexico hydrocarbon seep communities. I. Regional distribution of hydrocarbon seepage and associated fauna. Deep-Sea Research A 35, 16391651.CrossRefGoogle Scholar
Lang, A. (1884) Die Polycladen (Seeplanarien) des Golfes von Neapel und der angrenzenden Meeresabschnitte. Eine Monographie. Fauna und Flora des Golfes von Neapel 11. ix + 688 pp. Leipzig.Google Scholar
MacAvoy, S.E, Macko, S.A. and Carney, R.S. (2003) Links between chemosynthetic production and mobile predators on the Louisiana continental slope: stable carbon isotopes of specific fatty acids. Chemical Geology 201, 229239.CrossRefGoogle Scholar
MacDonald, I.R., Reilly, J.F., Guinasso, N.L., Brooks, J.M., Carney, R.S., Bryant, W.A. and Bright, T.J. (1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248, 10961099.CrossRefGoogle Scholar
Newell, R.I.E., Alspach, G.S., Kennedy, V.S. and Jacobs, D. (2000) Mortality of newly metamorphosed eastern oysters (Crassostrea virginica) in mesohaline Chesapeake Bay. Marine Biology 136, 665676.CrossRefGoogle Scholar
Newman, L.J. and Cannon, L.R.G. (1994) Biodiversity of tropical polyclad flatworms (Platyhelminthes, Polycladida) from the Great Barrier Reef, Australia. Memoirs of the Queensland Museum 30, 159163.Google Scholar
Newman, L.J. and Cannon, L.R.G. (2000) A new genus of euryleptid flatworm (Platyhelmithes, Polycladida, Euryleptidae) from the Indo-Pacific. Journal of Natural History 34, 191205.CrossRefGoogle Scholar
Newman, L.J. and Cannon, L.R.G. (2002) The genus Cycloporus (Platyhelminthes: Polycladida) from Australasian waters. Raffles Bulletin of Zoology 50, 287299.Google Scholar
Newman, L.J., Cannon, L.R.G. and Govan, H. (1993) Stylochus (Imogene) matatasi n. sp. (Platyhelminthes, Polycladida): pest of cultured giant clams and pearl oysters from Solomon Islands. Hydrobiologia 257, 185189.CrossRefGoogle Scholar
Pailleret, M., Haga, T., Petit, P., Prive-Gill, C., Saedlou, N., Gaill, F. and Zbinden, M. (2007) Sunken wood from the Vanuatu Islands: identification of wood substrates and preliminary description of associated fauna. Marine Ecology 28, 233241.CrossRefGoogle Scholar
Paull, C.K., Hecker, B., Commeau, R., Freeman-Lynde, R.P., Neumann, C., Corso, W.P., Golubic, S., Hook, J.E., Sikes, E. and Curray, J. (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226, 965967.CrossRefGoogle ScholarPubMed
Pearse, A.S. (1938) Polyclads of the east coast of North America. Proceedings of the United States National Museum 86, 6798.CrossRefGoogle Scholar
Provenzano, A.J. (1961) Effects of the flatworm Stylochus ellipticus (Girard) on oyster spat in two salt water ponds in Massachusetts. Proceedings of the National Shellfish Association 50, 8388.Google Scholar
Quiroga, S.Y., Bolaños, D.M. and Litvaitis, M.K. (2006) First description of deep-sea polyclad flatworms from the North Pacific: Anocellidus n. gen. profundus n. sp. (Anocellidae, n. fam.) and Oligocladus voightae n. sp. (Euryleptidae). Zootaxa 1317, 119.CrossRefGoogle Scholar
Salvador, A. (1987) Late Triassic–Jurassic paleogeography and origin of the Gulf of Mexico. American Association of Petroleum Geologists Bulletin 71, 419451.Google Scholar
Turner, R.D. (1978) Wood, mollusks, and deep-sea food chains. Bulletin of the American Malacological Union for 1977, 1319.Google Scholar
Van Dover, C.L. (2000) The ecology of deep-sea hydrothermal vents. Princeton: Princeton University Press.CrossRefGoogle Scholar
Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K., Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., VonDamm, K.L., Banta, A., Gallant, R.M., Götz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P., McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young, C.R. and Vrijenhoek, R.C. (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818823.CrossRefGoogle ScholarPubMed
Verrill, A.E. (1892) Marine Planarians of New England. Transactions of the Connecticut Academy of Arts and Sciences 8, 60520.Google Scholar
Voight, J.R. (2007) Experimental deep-sea deployments reveal diverse Northeast Pacific wood-boring bivalves of Xylophagainae (Myoida: Pholadidae). Journal of Molluscan Studies 73, 377392.CrossRefGoogle Scholar
Webster, J.R. and Medford, R.Z. (1961) Flatworm distribution and associated oyster mortality in Chesapeake Bay. Proceedings of the National Shellfish Association 50, 8996.Google Scholar