Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T14:37:40.168Z Has data issue: false hasContentIssue false

The single degenerate channel for the progenitors of Type Ia supernovae

Published online by Cambridge University Press:  01 April 2008

Xiangcun Meng
Affiliation:
National Astronomical Observatories/Yunnan Observatory, the Chinese Academy of Sciences, Kunming, 650011, China, email: conson859@msn.com Graduate School of the Chinese Academy of Sciences
Xuefei Chen
Affiliation:
National Astronomical Observatories/Yunnan Observatory, the Chinese Academy of Sciences, Kunming, 650011, China, email: conson859@msn.com
Zhanwen Han
Affiliation:
National Astronomical Observatories/Yunnan Observatory, the Chinese Academy of Sciences, Kunming, 650011, China, email: conson859@msn.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have carried out a detailed study of the single-degenerate channel for the progenitors of type Ia supernovae (SNe Ia). In the model, a carbon-oxygen white dwarf (CO WD) accretes hydrogen-rich material from an unevolved or a slightly evolved non-degenerate companion to increase its mass to Chandrasekhar mass limit. Incorporating the prescription of Hachisu et al. (1999a) for the accretion efficiency into Eggleton's stellar evolution code and assuming that the prescription is valid for all metallicities, we performed binary stellar evolution calculations for more than 25,000 close WD binary systems with various metallicities. The initial parameter spaces for SNe Ia are presented in an orbital period-secondary mass (log Pi, M2i) plane for each Z.

Adopting the results above, we studied the birth rate of SNe Ia for various Z via binary population synthesis. From the study, we see that for a high Z, SNe Ia occur systemically earlier and the peak value of the birth rate is larger if a single starburst is assumed. The Galactic birth rate from the channel is lower than (but comparable to) that inferred from observations.

We also showed the distributions of the parameters of the binary systems at the moment of supernova explosion and the distributions of the properties of companions after supernova explosion. The former provides physics input to simulate the interaction between supernova ejecta and its companion, and the latter is helpful for searching the companions in supernova remnants.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Alexander, D. R. & Ferguson, J. W. 1994, ApJ 437, 879CrossRefGoogle Scholar
Branch, D. 2004, Nature 431, 1044Google Scholar
Cappellaro, E. & Turatto, M. 1997, in Ruiz-Lapuente, P., Cannal, R., Isern, J., eds, Thermonuclear Supernovae. Kluwer, Dordrecht p. 77Google Scholar
Chen, X. & Tout, C. A. 2007, ChJAA 7, 2, 245Google Scholar
Eggleton, P. P. 1971, MNRAS 151, 351Google Scholar
Eggleton, P. P. 1972, MNRAS 156, 361Google Scholar
Eggleton, P. P. 1973, MNRAS 163, 279Google Scholar
Hachisu, I., Kato, M., & Nomoto, K. 1996, ApJ 470, L97Google Scholar
Hachisu, I., Kato, M., Nomoto, K., & Umeda, H. 1999a, ApJ 519, 314Google Scholar
Han, Z., Podsiadlowski, P., & Eggleton, P. P. 1994, MNRAS 270, 121Google Scholar
Han, Z., Tout, C. A., & Eggleton, P. P. 2000, MNRAS 319, 215CrossRefGoogle Scholar
Han, Z. & Podsiadlowski, Ph. 2006, MNRAS 368, 1095Google Scholar
Hillebrandt, W. & Niemeyer, J. C. 2000, ARA&A 38, 191Google Scholar
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS 315, 543Google Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS 329, 897Google Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ 464, 943CrossRefGoogle Scholar
Ihara, Y., Ozaki, J., Doi, M., et al. 2007, PASJ 59, 811, arXiv: 0706.3259CrossRefGoogle Scholar
Kasen, D., Nugent, P., Thomas, R. C., & Wang, L. 2004, ApJ 610, 876Google Scholar
Leibundgut, B. 2000, A&ARv 10, 179Google Scholar
Leonard, D. C. & Filippenko, A.V 2005, in Turatto, M. et al. , eds, in 1604 - 2004, Supernovae as Cosmological Lighthouses, (San Francisco: ASP), (astro-ph/0409518)Google Scholar
Leonard, D. C., et al. 2005, ApJ 632, 450CrossRefGoogle Scholar
Marietta, E., Burrows, A., & Fryxell, B. 2000, ApJS 128, 615Google Scholar
Meng, X., Chen, X., & Han, X. 2008, arXiv: 0802.2471Google Scholar
Nomoto, K., Thielemann, F-K., & Yokoi, K. 1984, ApJ 286, 644Google Scholar
Perlmutter, S., et al. 1999, ApJ 517, 565CrossRefGoogle Scholar
Phillips, M. M. 1993, ApJ 413, L105Google Scholar
Pols, O. R., Tout, C. A., Eggleton, P. P., et al. 1995, MNRAS 274, 964Google Scholar
Pols, O. R., Schröder, K. P., Hurly, J. R., et al. 1998, MNRAS 298, 525Google Scholar
Reindl, B., Tammann, G. A., Sandage, A., et al. 2005, ApJ 624, 532Google Scholar
Riess, A. et al. 1998, AJ 116, 1009CrossRefGoogle Scholar
Ruiz-Lapuente, P., et al. 2004, Nature 431, 1069Google Scholar
van den Bergh, S. & Tammann, G. A. 1991, ARA&A 29, 363Google Scholar
Whelan, J. & Iben, I. 1973, ApJ 186, 1007Google Scholar