Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T01:25:22.916Z Has data issue: false hasContentIssue false

Low-Mass Extremely Metal-Poor Stellar Models: Yields, Uncertainties and the Galactic Halo Stars

Published online by Cambridge University Press:  01 April 2008

Simon W. Campbell
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, Taiwan10617 email: simcam@asiaa.sinica.edu.tw Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, Monash University, Melbourne, Australia 3800 email: john.lattanzio@sci.monash.edu.au
J. C. Lattanzio
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, Taiwan10617 email: simcam@asiaa.sinica.edu.tw
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have calculated a set of low-mass (0.85 MM ≤ 3.0 M) zero metallicity and extremely metal-poor (−6.5 ≤ [Fe/H] ≤ −3.0) stellar models, including nucleosynthetic yields for 74 species. As far as we are aware these are the first detailed yields in the mass and metallicity range considered. Due to the difficulty in modelling such stars the yields naturally contain numerous uncertainties, and thus present interesting challenges for future stellar modelling. We briefly present some results in the context of the Galactic Halo star observations, and also discuss qualitatively some of the uncertainties in the modelling. We conclude by suggesting that much work is still necessary in this research area. For example, multidimensional fluid dynamics models are needed to simulate the violent proton ingestion events that occur during the core He flash and early TPAGB, observations and theory of mass loss at low metallicities are needed, the effects of reaction rate uncertainties need to be quantified, and low temperature opacities variable in carbon (and nitrogen) need to be included in the models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Fujimoto, M. Y., Iben, I. J., & Hollowell, D. 1990 ApJ 349, 580CrossRefGoogle Scholar
Cassisi, S., Castellani, V., & Tornambe, A. 1996 ApJ 459, 298CrossRefGoogle Scholar
Siess, L., Livio, M., & Lattanzio, J. 2002 ApJ 570, 329CrossRefGoogle Scholar
Schlattl, H., Salaris, M., Cassisi, S., & Weiss, A. 2002 A&A 395, 77Google Scholar
Picardi, I., Chieffi, A., Limongi, M., Pisanti, O., Miele, G., Mangano, G., & Imbriani, G. 2004 ApJ 609, 1035Google Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., & Iben, I. J. 2004 ApJ 611, 476CrossRefGoogle Scholar
Schlattl, H., Cassisi, S., Salaris, M., & Weiss, A. 2001 ApJ, 559, 1082CrossRefGoogle Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A 43, 531Google Scholar
Shigeyama, T. & Tsujimoto, T. 1998, ApJL 507, L135CrossRefGoogle Scholar
Limongi, M., Chieffi, A., & Bonifacio, P. 2003 ApJL 594, L123Google Scholar
Fujimoto, M. Y., Ikeda, Y., & Iben, I. J. 2000 ApJ 529, L25CrossRefGoogle Scholar
Weiss, A., Schlattl, H., Salaris, M., & Cassisi, S. 2004 A&A 422, 217Google Scholar
Christlieb, N., Gustafsson, B., Korn, A. J., Barklem, P. S., Beers, T. C., Bessell, M. S., Karlsson, T., & Mizuno-Wiedner, M. 2004 ApJ 603, 708CrossRefGoogle Scholar
Aoki, W., Frebel, A., Christlieb, N., Norris, J. E., et al. 2006 ApJ 639, 897CrossRefGoogle Scholar
Frebel, A.Christlieb, N., Norris, J. E., Beers, T. C., et al. 2006 ApJ 652, 1585CrossRefGoogle Scholar
Spite, M., Cayrel, R., Hill, V., Spite, F., et al. 2006 A&A 455, 291Google Scholar
Aoki, W., Beers, T. C., Christlieb, N., Norris, J. E., Ryan, S. G., & Tsangarides, S. 2007 ApJ 655, 492CrossRefGoogle Scholar
Beers, T. C., Sivarani, T., Marsteller, B., Lee, Y., Rossi, S., & Plez, B. 2007 AJ 133, 1193CrossRefGoogle Scholar
Cohen, J. G., McWilliam, A., Shectman, S., Thompson, I., Christlieb, N., Melendez, J., Ramirez, S., Swensson, A., & Zickgraf, F.-J. 2006 AJ 132, 137CrossRefGoogle Scholar
Frost, C. A. & Lattanzio, J. C. 1996, ApJ 473, 383Google Scholar
Wood, P. R. & Zarro, D. M. 1981, ApJ 247, 247Google Scholar
Iglesias, C. A. & Rogers, F. J. 1996, ApJ 464, 943CrossRefGoogle Scholar
Ferguson, J. W., Alexander, D. R., Allard, F., Barman, T., Bodnarik, J. G., Hauschildt, P. H., Heffner-Wong, A., & Tamanai, A. 2005 ApJ 623, 585CrossRefGoogle Scholar
Meynet, G., Maeder, A., & Mowlavi, N. 2004 A&A 416, 1023Google Scholar
Cannon, R. C. 1993, MNRAS 263, 817CrossRefGoogle Scholar
Lattanzio, J., Frost, C., Cannon, R., & Wood, P. R. 1996 MmSAI 67, 729Google Scholar
Lugaro, M., Ugalde, C., Karakas, A. I., Görres, J., Wiescher, M., Lattanzio, J. C., & Cannon, R. C. 2004 ApJ 615, 934Google Scholar
Reimers, D. 1975, Memoires of the Societe Royale des Sciences de Liege 8, 369Google Scholar
Vassiliadis, E. & Wood, P. R. 1993, ApJ 413, 641CrossRefGoogle Scholar
D'Antona, F. 1982 A&A 115, L1Google Scholar
Origlia, L., Rood, R. T., Fabbri, S., Ferraro, F. R., Fusi Pecci, F., & Rich, R. M. 2007 ApJL 667, L85CrossRefGoogle Scholar
Mattsson, L., Wahlin, R., Höfner, S., & Eriksson, K. 2008 A&A 484, L5Google Scholar
McDonald, I. & van Loon, J. T. 2007 A&A 476, 1261Google Scholar
Origlia, L., Ferraro, F. R., Fusi Pecci, F., & Rood, R. T. 2002 ApJ 571, 458CrossRefGoogle Scholar
Marigo, P., Girardi, L., Chiosi, C., & Wood, P. R. 2002 A&A 371, 152Google Scholar
Cristallo, S., Straniero, O., Lederer, M. T., & Aringer, B. 2007 ApJ 667, 489CrossRefGoogle Scholar
Lederer, M. T. & Aringer, B. 2008 in: Evolution and Nucleosynthesis in AGB Stars, American Institute of Physics Conference Series, 1001, 11Google Scholar