Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T07:47:12.527Z Has data issue: false hasContentIssue false

Duplicity theory and ground squirrels: Linkages between photoreceptors and visual function

Published online by Cambridge University Press:  02 June 2009

Gerald H. Jacobs
Affiliation:
Department of Psychology, University of California, Santa Barbara

Abstract

The presence of rod and cone photorceptors has traditionally been linked to well-defined classes of visual capacity by the generalization known as duplicity theory. This paper summarizes results obtained from studies of vision and the visual system in ground squirrels (Spermophilus sp.) that reveal instances where structure/function linkages depart from expectations based in duplicity theory. The details of these exceptions are reviewed and their possible mechanisms discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, E.D. (1946). Rod and cone components in the electric response of the eye. Journal of Physiology 105, 2437.CrossRefGoogle ScholarPubMed
Ahnelt, P.K., (1985). Characterization of the color-related receptor mosaic in the ground squirrel retina. Vision Research 25, 15571567.CrossRefGoogle ScholarPubMed
Ahnelt, P.K., Kolb, H. & Pflug, R. (1987). Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. Journal of Comparative Neurology 255, 1834.CrossRefGoogle ScholarPubMed
Anderson, D.H. & Fisher, S.K. (1976). The photoreceptors of diurnal squirrels: outer segment structure, disc shedding, and protein renewal. Journal of Ultrastructure Research 55, 119141.CrossRefGoogle ScholarPubMed
Anderson, D.H. & Jacobs, G.H., (1972). Color vision and visual sensitivity in the California ground squirrel, Citellus beecheyi. Vision Research 12, 19952004.CrossRefGoogle ScholarPubMed
Arden, G.B. & Tansley, K., (1955). The spectral sensitivity of the pure-cone retina of the souslik (Citellus citellus). Journal of Physiology 130, 225232.CrossRefGoogle ScholarPubMed
Blakeslee, B., (1983). Electrophysiological studies of spectral mechanisms in the retinas of ground squirrels and tree squirrels. Unpublished Doctoral Dissertation,University of California, Santa Barbara.Google Scholar
Blakeslee, B., Jacobs, G.H., (1987). Increment thresholds of the three spectral mechanisms in the retina of the California ground squirrel (Spermophilus beecheyi). Experimental Brain Research 66, 2128.CrossRefGoogle ScholarPubMed
Blakeslee, B., Jacobs, G.H., & Neitz, J., (1988). Spectral mechanisms in the tree squirrel retina. Journal of Comparative Physiology A 162, 773780.CrossRefGoogle ScholarPubMed
Cohen, A.I. (1964). Some observations on the fine structure of the retinal receptors of the American grey squirrel. Investigative Ophthalmology 3, 198216.Google Scholar
Cohen, A.I. (1970). Rods and cones. In Physiology of Photoreceptor Organs, ed. Fuortes, M.G.F., pp.63110. Berlin: Springer Verlag.Google Scholar
Connor, J.D. & MacLeod, D.I.A., (1977). Rod photoreceptors detect rapid flicker. Science 195, 698699.CrossRefGoogle Scholar
De Monasterio, F.M., McCrane, E.P., Newlander, J.K. & Schein, S.J., (1985). Density profile of blue-sensitive cones along the horizontal meridian of the macaque retina. Investigative Ophthalmolgy and Visual Science 26, 289302.Google ScholarPubMed
Dowling, J.E., (1964). Structure and function in the all-cone retina of the ground squirrel. Symposium on the Physiological Basis of Form Discrimination. Brown University, Rhode Island, pp.1723.Google Scholar
Dowling, J.E. & Ripps, H. (1970). Visual adaptation in the retina of the skate. Journal of General Physiology 56, 491520.CrossRefGoogle ScholarPubMed
Duke-Elder, S., (1958). The Eve in Evolution. St. Louis, MO: Mosby.Google Scholar
Fach, C. & Sharpe, L.T., (1988). Rod increment and flicker thresholds measured on backgrounds of different wavelengths. Investigative Ophthalmology and Visual Science (Suppl.) 29, 59.Google Scholar
Fisher, S.K., Jacobs, G.H., Anderson, D.H. & Silverman, M.S., (1976). Rods in the antelope ground squirrel. Vision Research 16, 875877.CrossRefGoogle ScholarPubMed
Green, D.G. & Dowling, J.E., (1975). Electrophysiological evidence for rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. Journal of Comparative Neurology 159, 461472.CrossRefGoogle ScholarPubMed
Green, D.G. & Siegel, I.M. (1975). Double branched flicker fusion curves from all-rod skate retina. Science 188, 11201122.CrossRefGoogle ScholarPubMed
Jacobs, G.H., (1978). Spectral sensitivity and color vision in the grounddwelling sciurids: results from golden-mantled ground squirrels and results for five species. Animal Behavior 26, 409421.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Tootell, R.B.H., (1977). Spectral mechanisms in the retina of the Arctic ground squirrel. Canadian Journal of Zoology 55, 14541460.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Tootell, R.B.H., (1979). spectral components in the b-wave of the ground squirrel electroretinogram. Vision Research 19, 12431247.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Tootell, R.B.H. (1981). Spectral-response properties of optic-nerve fibers in the ground squirrel. Journal of Neurophysiology 45, 891902.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Yolton, R.L., (1971). Visual sensitivity and color vision in ground squirrels. Vision Research 11, 511537.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Fisher, S.K., Anderson, D.H. & Silverman, M.S., (1976). Scotopic and photopic vision in the California ground squirrel: physiological and anatomical evidence. Journal of Comparative Neurologsy 165, 209228.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Tootell, R.B.H., Fisher, S.K. & Anderson, D.H., (1980). Rod photoreceptors and scotopic vision in ground squirrels. Journal of Comparative Neurology 189, 113125.CrossRefGoogle Scholar
Jacobs, G.H., Neitz, J. & Crognale, M., (1985). Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry. Journal of Comparative Physiology A 156, 503509.CrossRefGoogle Scholar
Kraft, T.W., (1988). Photocurrents of cone photoreceptors of the golden-mantled ground squirrel. Journal of Physiology 404, 190213.CrossRefGoogle ScholarPubMed
Long, K.O. & Fisher, S.K., (1983 a). The distribution of photoreceptors and ganglion cells in the California ground squirrel (Spermophilus beecheyi). Journal of Comparative Neurology, 221, 329340.CrossRefGoogle ScholarPubMed
Long, K.O. & Fisher, S.K.,(1983 b). Procion and lucifer staining of ground squirrel photoreceptors. Investigative Ophthalmology and Visual Science (Suppl.) 24, 259.Google Scholar
Michael, C.R., (1968). Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. Journal of Neurophysiology 31, 249282.CrossRefGoogle Scholar
Nunn, B.J., Schnapf, J.L. & Baylor, D.A., (1985). The action spectra of rods and red- and green-sensitive cones of the monkey Macaca fascicularis. In Central and Peripheral Mechanisms of Colour Vision, ed. Ottoson, D. & Zeki, S., pp.139149. London: Macmillan.CrossRefGoogle Scholar
Peachey, N.S., Alexander, K.R. & Fishman, G.A., (1989). The luminance-response function of the dark-adapted human electroretinogram. Vision Research 29, 263270.CrossRefGoogle ScholarPubMed
Pedler, C., (1965). Rods and cones–a fresh approach. In Colour Vision Physiology and Experimental Psychology, ed. De Recuck, A.V.S. & Knight, J., pp.5283. Boston, Massachusetts: Little, Brown and Co.Google Scholar
Raisanen, J. & Dawis, S.M., (1983). A reweighting of receptor mechanisms in the ground squirrel retina: PIII and b-wave spectral-sensitivity functions. Brain Research 270, 311318.CrossRefGoogle ScholarPubMed
Saugstad, P. & Saugstad, A., (1959). The duplicity theory–an evaluation. Advances in Ophthalmology 9, 151.Google Scholar
Schultze, M. (1866). Zur anatomie und physiologie der retina. Arch. Mikr. Anat. 2, 176286.CrossRefGoogle Scholar
Sharpe, L.T., Stockman, A. & MacLeod, D.I.A. (1987). A duplexity of scotopic flicker detection. Perception 16, 262.Google Scholar
Stockman, A., Sharpe, L.T. & Macleod, D.I.A. (1988). A duality of rod-flicker detection: pi0 and pi0. Investigative Ophthalmology and Visual Science 29, 59.Google Scholar
Szel, A. & Rohlich, P. (1988). Four photoreceptor types in the ground squirrel retina as evidenced by immunocytochemistry. Vision Research 28, 12971302.CrossRefGoogle ScholarPubMed
Tansley, K., Copenhaver, R.M. & Gunkel, R.D. (1961). Spectral-sen-sitivity curves of diurnal squirrels. Vision Research 1, 154165.CrossRefGoogle Scholar
Tong, L. (1977). Contrast sensitive and color opponent optic tract fibers in the Mexican ground squirrel: Evidence for rod (502λmax) input. Unpublished Doctoral Dissertation, University of Michigan, Ann Arbor.Google Scholar
Walls, G.L. (1934). The reptilian retina. 1. A new concept of visual-cell evolution. American Journal of Ophthalmology 17, 892915.CrossRefGoogle Scholar
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Michigan: Cranbrook Institute of Science.Google Scholar
West, R.W. (1978). Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections. Vision Research 18, 129136.CrossRefGoogle ScholarPubMed
West, R.W. & Dowling, J.E. (1975). Anatomical evidence for cone- and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. Journal of Comparative Neurology 159, 439460.CrossRefGoogle ScholarPubMed
Yolton, R.L., Yolton, D.R., Renz, J. & Jacobs, G.H. (1974). Preretinal absorbance in sciurid eyes. Journal of Mammalogy 55, 1420.CrossRefGoogle ScholarPubMed