Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T05:50:52.833Z Has data issue: false hasContentIssue false

Paying attention to reading: The neurobiology of reading and dyslexia

Published online by Cambridge University Press:  07 October 2008

Sally E. Shaywitz*
Affiliation:
Yale University School of Medicine
Bennett A. Shaywitz
Affiliation:
Yale University School of Medicine
*
Address correspondence and reprint requests to: Sally Shaywitz, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510; E-mail: sally.shaywitz@yale.edu.

Abstract

Extraordinary progress in functional brain imaging, primarily advances in functional magnetic resonance imaging, now allows scientists to understand the neural systems serving reading and how these systems differ in dyslexic readers. Scientists now speak of the neural signature of dyslexia, a singular achievement that for the first time has made what was previously a hidden disability, now visible. Paralleling this achievement in understanding the neurobiology of dyslexia, progress in the identification and treatment of dyslexia now offers the hope of identifying children at risk for dyslexia at a very young age and providing evidence-based, effective interventions. Despite these advances, for many dyslexic readers, becoming a skilled, automatic reader remains elusive, in great part because though children with dyslexia can be taught to decode words, teaching children to read fluently and automatically represents the next frontier in research on dyslexia. We suggest that to break through this “fluency” barrier, investigators will need to reexamine the more than 20-year-old central dogma in reading research: the generation of the phonological code from print is modular, that is, automatic and not attention demanding, and not requiring any other cognitive process. Recent findings now present a competing view: other cognitive processes are involved in reading, particularly attentional mechanisms, and that disruption of these attentional mechanisms play a causal role in reading difficulties. Recognition of the role of attentional mechanisms in reading now offer potentially new strategies for interventions in dyslexia. In particular, the use of pharmacotherapeutic agents affecting attentional mechanisms not only may provide a window into the neurochemical mechanisms underlying dyslexia but also may offer a potential adjunct treatment for teaching dyslexic readers to read fluently and automatically. Preliminary studies suggest that agents traditionally used to treat disorders of attention, particularly attention-deficit/hyperactivity disorder, may prove to be an effective adjunct to improving reading in dyslexic students.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by grants from the National Institute of Child Health and Human Development (P50 HD25802, RO1 HD046171, R01 HD057655).

References

Anderson, A., & Gore, J. (1997). The physical basis of neuroimaging techniques. In Lewis, M. & Peterson, B. (Eds.), Child and adolescent psychiatric clinics of North America (Vol. 6, pp. 213264). Philadelphia, PA: W.B. Saunders.Google Scholar
Arnsten, A. (2006a). Fundamentals of attention-deficit/hyperactivity disorder: Circuits and pathways. Journal of Clinical Psychiatry, 67(Suppl. 8), 712.Google Scholar
Arnsten, A. F. T. (2006b). Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology, 18.Google Scholar
Aron, A. R., Dowson, J. H., Sahakian, B. J., & Robbins, T. W. (2003). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 54, 14651468.Google Scholar
August, G. J., & Garfinkel, B. D. (1990). Comorbidity of ADHD and reading disability among clinic-referred children. Journal of Abnormal Child Psychology, 18, 2945.Google Scholar
Aylward, E., Richards, T., Berninger, V., Nagy, W., Field, K., Grimme, A., et al. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61, 212219.Google Scholar
Bedard, A.-C., Jain, U., Johnson, S. H., & Tannock, R. (2007). Effects of methylphenidate on working memory components: Influence of measurement. Journal of Child Psychology and Psychiatry and Allied Disciplines, 48, 872880.Google Scholar
Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K., & Wandell, B. A. (2007). Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cerebral Cortex, 17, 16041611.Google Scholar
Binder, J., & Mohr, J. (1992). The topography of callosal reading pathways. Brain, 115, 18071826.Google Scholar
Birnbaum, S. G., Gobeske, K. T., Auerbach, J., Taylor, J., & Arnsten, A. F. T. (1999). A role for norepinephrine in stress-induced cognitive deficits: Alpha 1-adrenoceptor mediation in prefrontal cortex. Biological Psychiatry, 46, 12661274.Google Scholar
Birnbaum, S. G., Yuan, P. X., Wang, M., Vijayraghavan, S., Bloom, A. K., Davis, D. J., et al. (2004). Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science, 306, 882884.Google Scholar
Bloomfield, L. (1933). Language. New York: Holt, Rinehart and Winston.Google Scholar
Booth, J. R., Bebko, G., Burman, D. D., & Bitan, T. (2007). Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuropsychologia, 45, 775783.Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002). Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage, 16, 722.Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2003). Relation between brain activation and lexical performance. Human Brain Mapping, 19, 155169.Google Scholar
Brambati, S., Termine, C., Ruffino, M., Danna, M., Lanzi, G., Stella, G., et al. (2006). Neuropsychological deficits and neural dysfunction in familial dyslexia. Brain Research, 1113, 174185.Google Scholar
Brambati, S. M., Termine, C., Ruffino, M., Stella, G., Fazio, F., Cappa, S. F., et al. (2004). Regional reductions of gray matter volume in familial dyslexia. Neurology, 63, 742745.Google Scholar
Brozoski, T., Brown, R., Rosvold, H., & Goldman, P. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205, 929931.Google Scholar
Bruck, M. (1992). Persistence of dyslexics' phonological awareness deficits. Developmental Psychology, 28, 874886.Google Scholar
Bruck, M. (1998). Outcomes of adults with childhood histories of dyslexia. In Hulme, C. & Joshi, R. (Eds.), Cognitive and linguistic bases of reading, writing, and spelling (pp. 179200). Mahwah, NJ: Erlbaum.Google Scholar
Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., et al. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting Stroop. Biological Psychiatry, 45, 15421552.Google Scholar
Bush, G., Valera, E., & Seidman, L. (2005). Functional neuroimaging of attention-deficit/hyperactivity disorder: A review and suggested future directions. Biological Psychiatry, 57, 12731284.Google Scholar
Bymaster, F., Katner, B., Nelson, D., Hemrick-Luecke, S., Threlkeld, P., Heiligenstein, J., et al. (2002). Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 27, 699711.Google Scholar
Cao, F., Bitan, T., Chou, T.-L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47, 10411050.Google Scholar
Casey, B., Nigg, J., & Durston, S. (2007). New potential leads in the biology and treatment of attention deficit-hyperactivity disorder. Current Opinion in Neurology, 20, 119124.Google Scholar
Casey, B. J., Epstein, J. N., Buhle, J., Liston, C., Davidson, M. C., Tonev, S. T., et al. (2007). Frontostriatal connectivity and its role in cognitive control in parent–child dyads with ADHD. American Journal of Psychiatry, 164, 17291736.Google Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., et al. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(Pt. 2), 291307.Google Scholar
Cohen, L., Lehericy, S., Henry, C., Bourgeois, M., Larroque, C., Sainte-Rose, C., et al. (2004). Learning to read without a left occipital lobe: Right-hemispheric shift of visual word form area. Annals of Neurology, 56, 890894.Google Scholar
Cohen, L., Martinaud, O., Lemer, C., Lehericy, S., Samson, Y., Obadia, M., et al. (2003). Visual word recognition in the left and right hemispheres: Anatomical and functional correlates of peripheral alexias. Cerebral Cortex, 13, 13131333.Google Scholar
Coltheart, M. (1978). Lexical access in simple reading tasks. In Underwood, G. (Ed.) Strategies of information processing (pp. 151216). London: Academic Press.Google Scholar
Coltheart, M. (1985). Cognitive neuropsychology and the study of reading. In Posner, M. & Marin, O. (Eds.), Attention and performance X1 (pp. 337). Hillsdale, NJ: Erlbaum.Google Scholar
Coltheart, M., Curtis, B., Atkins, P., & Haller, M. (1993). Models of reading aloud: Dual-route and parallel-distributed-processing approaches. Psychological Review, 100, 589608.Google Scholar
Coltheart, M., & Rastle, K. (1994). Serial processing in reading aloud: Evidence for dual-route models of reading. Journal of Experimental Psychology: Human Perception and Performance, 20, 11971211.Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204256.Google Scholar
Damasio, A. R., & Damasio, H. (1983). The anatomic basis of pure alexia. Neurology, 33, 15731583.Google Scholar
Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 9, 335341.Google Scholar
Dehaene, S., Naccache, L., Cohen, L., Le Bihan, D., Mangin, J., Poline, J., et al. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4, 752758.Google Scholar
Dejerine, J. (1891). Sur un cas de cécité verbale avec agraphie, suivi d'autopsie. Compte Rendu des Seances Société du Biologie, 43, 197201.Google Scholar
Dejerine, J. (1892). Contribution a l'etude anatomo-pathologique et clinique des differentes varietes de cecite verbale. Memoires de la Societe de Biologie, 4, 6190.Google Scholar
Devlin, J., Jamison, H., Gonnerman, L., & Matthews, P. (2006). The role of the posterior fusiform gyrus in reading. Journal of Cognitive Neuroscience, 18, 911922.Google Scholar
Durston, S., Davidson, M. C., Mulder, M. J., Spicer, J. A., Galvan, A., Tottenham, N., et al. (2007). Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 48, 881889.Google Scholar
Dykman, R. A., & Ackerman, P. T. (1991). Attention deficit disorder and specific reading disability: Separate but often overlapping disorders. Journal of Learning Disabilities, 24, 96103.Google Scholar
Eden, G., Jones, K., Cappell, K., Gareau, L., Wood, F., Zeffiro, T., et al. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44, 411422.Google Scholar
Elliott, R., Sahakian, B., Matthews, K., Bannerjea, A., Rimmer, J., & Robbins, T. (1997). Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology, 131, 196206.Google Scholar
Epstein, J. N., Casey, B. J., Tonev, S. T., Davidson, M. C., Reiss, A. L., Garrett, A., et al. (2007). ADHD- and medication-related brain activation effects in concordantly affected parent–child dyads with ADHD. Journal of Child Psychology and Psychiatry, 48, 899913.Google Scholar
Ferrer, E., McArdle, J., Shaywitz, B., Holahan, J., Marchione, K., & Shaywitz, S. (2007). Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. Developmental Psychology, 43, 14601473.Google Scholar
Fiebach, C. J., Friederici, A. D., Muller, K., & Cramon, D. Y. V. (2002). fMRI evidence for dual routes to the mental lexicon in visual word recognition. Journal of Cognitive Neuroscience, 14, 1123.Google Scholar
Fiez, J. A., & Peterson, S. E. (1998). Neuroimaging studies of word reading. Proceedings of the National Academy of Science of the United States of America, 95, 914921.Google Scholar
Fletcher, P., Frith, C., & Rugg, M. (1997). The functional anatomy of episodic memory. Trends in Neuroscience, 20, 213218.Google Scholar
Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
Forster, K. I., & Chambers, S. M. (1973). Lexical access and naming time. Journal of Verbal Learning and Verbal Behavior, 12, 627635.Google Scholar
Frackowiak, R., Friston, K., Frith, C., Dolan, R., Price, C., Zeki, S., et al. (2004). Human Brain Function (2nd ed.). San Diego, CA: Academic Press/Elsevier Science.Google Scholar
Francis, D. J., Shaywitz, S. E., Stuebing, K. K., Shaywitz, B. A., & Fletcher, J. M. (1996). Developmental lag versus deficit models of reading disability: A longitudinal, individual growth curves analysis. Journal of Educational Psychology, 88, 317.Google Scholar
Friedman, R. F., Ween, J. E., & Albert, M. L. (1993). Alexia. In Heilman, K. M. & Valenstein, E. (Eds.), Clinical neuropsychology (3rd ed., pp. 3762). New York: Oxford University Press.Google Scholar
Frith, U., & Snowling, M. (1983). Reading for meaning and reading for sound in autistic and dyslexic children. British Journal of Developmental Psychology, 1, 329342.Google Scholar
Gaillard, R., Naccache, L., Pinel, P., Clemenceau, S., Volle, E., Hasboun, D., et al. (2006). Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron, 50, 191204.Google Scholar
Gaillard, W. D., Balsamo, L. M., Ibrahim, Z., Sachs, B. C., & Xu, B. (2003). fMRI identifies regional specialization of neural networks for reading in young children. Neurology, 60, 94100.Google Scholar
Galaburda, A. M., Menard, M., & Rosen, G. D. (1994). Evidence for aberrant auditory anatomy in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 91, 80108013.Google Scholar
Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 237294.Google Scholar
Grigg, W., Donahue, P., & Dion, G. (2007). The Nation's Report Card: 12th-grade reading and mathematics 2005 (NCES Report 2007-468). Washington, DC: US Government Printing Office.Google Scholar
Grizenko, N., Bhat, M., Schwartz, G., Ter-Sttepanian, M., & Joober, R. (2006). Efficacy of methylphenidate in children with attention-deficit hyperactivity disorder and learning disabilitites: A randomized crossover trial. Journal of Psychiatry & Neuroscience, 31, 4651.Google Scholar
Gronau, N., & Frost, R. (1997). Prelexical phonologic computation in a deep orthography: Evidence from backward masking in Hebrew. Psychonomic Bulletin & Review, 4, 107112.Google Scholar
Harris, M., & Coltheart, M. (1986). Language processing in children and adults: An introduction. London: Routledge & Kegan Paul.Google Scholar
Hart, B. H., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Helenius, P., Tarkiainen, A., Cornelissen, P., Hansen, P. C., & Salmelin, R. (1999). Dissociation of normal feature analysis and deficient processing of letter-strings in dyslexic adults. Cerebral Cortex, 4, 476483.Google Scholar
Henry, C., Gaillard, R., Volle, E., Chiras, J., Ferrieux, S., Dehaene, S., et al. (2005). Brain activations during letter-by-letter reading: A follow-up study. Neuropsychologia, 43, 19831989.Google Scholar
Horwitz, B., Rumsey, J. M., & Donohue, B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Science of the United States of America, 95, 89398944.Google Scholar
Huey, E. (1908). The psychology and pedagogy of reading. New York: Macmillan.Google Scholar
Hulme, C., Snowling, M., Caravolas, M., & Carroll, J. (2005). Phonological skills are (probably) one cause of success in learning to read: A comment on Castles and Coltheart. Scientific Studies of Reading, 9, 351365.Google Scholar
Jezzard, P., Matthews, P., & Smith, S. (2001). Functional MRI, an introduction to methods. Oxford: Oxford University Press.Google Scholar
Johnson, R. L., & Rayner, K. (2007). Top-down and bottom-up effects in pure alexia: Evidence from eye movements. Neuropsychologia, 45, 22462257.Google Scholar
Johnston, M., & Castles, A. (2003). Dissociating automatic orthographic and phonological codes in lexical access and lexical acquisition. In Kinoshita, S. & Lupker, S. (Eds.), Masked priming: The state of the art (pp. 193222). Hove: Psychology Press.Google Scholar
Keulers, E. H. H., Hendriksen, J. G. M., Feron, F. J. M., Wassenberg, R., Wuisman-Frerker, M. G. F., Jolles, J., et al. (2007). Methylphenidate improves reading performance in children with attention deficit hyperactivity disorder and comorbid dyslexia: An unblinded clinical trial. European Journal of Paediatric Neurology, 11, 2128.Google Scholar
Kronbichler, M., Hutzler, F., Staffen, W., Mair, A., Ladurner, G., & Wimmer, H. (2006). Evidence for a dysfunction of left posterior reading areas in German dyslexic readers. Neuropsychologia, 44, 18221832.Google Scholar
LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic information processing in reading. Cognitive Psychology, 6, 293323.Google Scholar
Lawler, A. (2001). Archaeology. Writing gets a rewrite. Science, 292, 24182420.Google Scholar
Leff, A., Spitsyna, G., Plant, G., & Wise, R. (2006). Structural anatomy of pure and hemianopic alexia. Journal of Neurology, Neurosurgery and Psychiatry, 77, 10041007.Google Scholar
Lefly, D. L., & Pennington, B. F. (1991). Spelling errors and reading fluency in compensated adult dyslexics. Annals of Dyslexia, 41, 143162.Google Scholar
Lerner, J. (1989). Educational interventions in learning disabilities. Journal of the American Academy of Child & Adolescent Psychiatry, 28, 326331.Google Scholar
Liberman, A., Cooper, F., Shankweiler, D., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431461.Google Scholar
Liberman, I. Y., Shankweiler, D., & Liberman, A. M. (1989). Phonology and reading disability: Solving the reading puzzle. In Shankweiler, D. & Liberman, I. Y. (Eds.), International Academy for Research in Learning Disabilities monograph series (Vol. 6, pp. 133). Ann Arbor, MI: University of Michigan Press.Google Scholar
Livingstone, M. S., Rosen, G. D., Drislane, F. W., & Galaburda, A. M. (1991). Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 88, 79437947.Google Scholar
Logan, G. (1988a). Toward an instance theory of automatization. Psychological Review, 95, 492527.Google Scholar
Logan, G. (1988b). Automaticity, resources and memory: Theoretical controversies and practical implications. Human Factors, 30, 538598.Google Scholar
Logan, G. (1990). Repetition priming and automaticity: Common underlying mechanisms? Cognitive Psychology, 22, 135.Google Scholar
Logan, G. (1991). Automaticity and memory. In Hockley, W. & Lewandowsky, S. (Eds.), Relating theory and data: Essays on human memory in honor of Bennet B. Murdock. Hillsdale, NJ: Erlbaum.Google Scholar
Logan, G. (1992). Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 883914.Google Scholar
Logan, G. (1997). Automaticity and reading: Perspectives from the instance theory of automatization. Reading and Writing Quarterly: Overcoming Learning Disabilities, 13, 123146.Google Scholar
Logan, G., & Etherton, J. (1998). What is learned during automatization? II. Obligatory encoding of location information. Journal of Experimental Psychology: Human Perception and Performance, 24, 17201736.Google Scholar
Logan, G., Taylor, S., & Etherton, J. (1996). Attention in the acquisition and expression of automaticity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 620638.Google Scholar
Logan, G., Taylor, S., & Etherton, J. (1999). Attention and automaticity: Toward a theoretical integration. Psychological Research, 62, 165181.Google Scholar
Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109, 376400.Google Scholar
Lovegrove, W. J., Bowling, A., Badcock, D., & Blackwood, M. (1980). Specific reading disability: Differences in contrast sensitivity as a function of spatial frequency. Science, 210, 439440.Google Scholar
Lovett, M., Ransby, M., Hardwick, N., Johns, M., & Donaldson, S. (1989). Can dyslexia be treated? Treatment-specific and generalized treatment effects in dyslexic children's response to remediation. Brain and Language, 37, 90121.Google Scholar
Lukatela, G., & Turvey, M. (1994a). Visual lexical access is initially phonological: I. Evidence from associative priming by words, homophones, and pseudohomophones. Journal of Experimental Psychology: General, 123, 331353.Google Scholar
Lukatela, G., & Turvey, M. (1994b). Visual lexical access is initially phonological: 2. Evidence from phonological priming by homophones and pseudohomophones. Journal of Experimental Psychology: General, 123, 331353.Google Scholar
Luo, C., Johnson, R., & Gallo, D. (1998). Automatic activation of phonological information in reading: Evidence from the semantic relatedness decision task. Memory & Cognition, 26, 833843.Google Scholar
Lyon, G. (1995). Toward a definition of dyslexia. Annals of Dyslexia, 45, 327.Google Scholar
Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia., 53, 114.Google Scholar
MacLeod, A., Buckner, R., Miezin, F., Petersen, S., & Raichle, M. (1998). Right anterior prefrontal cortex activation during semantic monitoring and working memory. NeuroImage, 7, 4148.Google Scholar
Marshall, J. C., & Newcombe, F. (1973). Patterns of paralexia: A psycholinguistic approach. Journal of Psycholinguistic Research, 2, 175199.Google Scholar
McCandliss, B., Cohen, L., & Dehaene, S. (2003). The visual word form area: Expertise in reading in the fusiform gyrus. Trends in Cognitive Sciences, 7, 293299.Google Scholar
McCrory, E., Mechelli, A., Frith, U., & Price, C. (2005). More than words: A common neural basis for reading and naming deficits in developmental dyslexia? Brain, 128, 261267.Google Scholar
McInnes, A., Bedard, A.-C., Hogg-Johnson, S., & Tannock, R. (2007). Preliminary evidence of beneficial effects of methylphenidate on listening comprehension in children with attention-deficit/hyperactivity disorder. Journal of Child and Adolescent Psychopharmacology, 17, 3549.Google Scholar
McIntosh, A., Bookstein, F., Haxby, J., & Grady, C. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143157.Google Scholar
McIntosh, A., Nyberg, L., Bookstein, F., & Tulving, E. (1997). Differential functional connectivity of prefrontal and medial temporal cortices during episodic memory retrieval. Human Brain Mapping, 5, 323327.Google Scholar
Mehta, M. A., Goodyer, I., & Sahakian, B. J. (2004). Methylphenidate improves working memory and set-shifting in AD/HD: Relationships to baseline memory capacity. Journal of Child Psychology and Psychiatry, 45, 293305.Google Scholar
Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. Journal of Neuroscience, 20, 65.Google Scholar
Morgan, W. P. (1896). A case of congenital word blindness. British Medical Journal, 1378.Google Scholar
Nakamura, K., Dehaene, S., Jobert, A., Le Bihan, D., & Kouider, S. (2005). Subliminal convergence of Kanji and Kana words: Further evidence for functional parcellation of the posterior temporal cortex in visual word perception. Journal of Cognitive Neuroscience, 17, 954968.Google Scholar
Nakamura, K., Dehaene, S., Jobert, A., Le Bihan, D., & Kouider, S. (2007). Task-specific change of unconscious neural priming in the cerebral language network. Proceedings of the National Academy of Sciences of the United States of America, 104, 1964319648.Google Scholar
Nakamura, K., Hara, N., Kouider, S., Takayama, Y., Hanajima, R., Sakai, K., et al. (2006). Task-guided selection of the dual neural pathways for reading. Neuron, 52, 557564.Google Scholar
Nation, K., & Snowling, M. (1997). Individual differences in contextual facilitation: Evidence from dyslexia and poor reading comprehension. Unpublished manuscript.Google Scholar
National Reading Panel. (2000). Teaching children to read: An evidence based assessment of the scientific research literature on reading and its implications for reading instruction (NIH Publication No. 00-4754). Washington, DC: US Department of Health and Human Services.Google Scholar
Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 35, 159182.Google Scholar
Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508511.Google Scholar
Park, L., Nigg, J., Waldman, I., Nummy, K., Huang-Pollock, C., Rappley, M., et al. (2005). Association and linkage of alpha-2A adrenergic receptor gene polymorphisms with childhood ADHD. Molecular Psychiatry, 10, 572580.Google Scholar
Paulesu, E., Demonet, J.-F., Fazio, F., McCrory, E., Chanoine, V., Brunswick, N., et al. (2001). Dyslexia-cultural diversity and biological unity. Science, 291, 21652167.Google Scholar
Perfetti, C., Bell, L., & Delaney, S. (1988). Automatic phonetic activation in silent word reading: Evidence from backward masking. Journal of Memory and Language, 27, 5870.Google Scholar
Perie, M., Grigg, W., & Donahue, P. (2005). National assessment of educational progress: The nation's report card, Reading 2005 (NPN Report No. 2006-451). Washington, DC: US Government Printing Office.Google Scholar
Price, C., Moore, C., & Frackowiak, R. S. J. (1996). The effect of varying stimulus rate and duration on brain activity during reading. NeuroImage, 3, 4052.Google Scholar
Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19, 473481.Google Scholar
Price, C. J., & Devlin, J. T. (2004). The pro and cons of labelling a left occipitotemporal region: “The visual word form area.” NeuroImage, 22, 477479.Google Scholar
Ramos, B., & Arnsten, A. (2007). Adrendergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacology & Therapeutics, 113, 523536.Google Scholar
Ramus, F., Rosen, S., Dakin, S., Day, B., Castellote, J., White, S., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126, 841865.Google Scholar
Rastle, K., & Coltheart, M. (1998). Whammy and double whammy: The effect of length on nonword reading. Psychonomic Bulletin and Review, 5, 277282.Google Scholar
Rastle, K., & Coltheart, M. (1999a). Lexical and nonlexical phonological priming. Journal of Experimental Psychology: Human Perception and Performance, 25, 461481.Google Scholar
Rastle, K., & Coltheart, M. (1999b). Serial and strategic effects in reading aloud. Journal of Experimental Psychology: Human Perception and Performance, 25, 482503.Google Scholar
Rayner, K., Foorman, B., Perfetti, C., Pesetsky, D., & Seidenberg, M. (2001). How psychological science informs the teaching of reading. Psychological Science in the Public Interest, 2, 3174.Google Scholar
Reynolds, M., & Besner, D. (2006). Reading aloud is not automatic: Processing capacity is required to generate a phonological code from print. Journal of Experimental Psychology: Human Perception and Performance, 32, 13031323.Google Scholar
Richards, T., Corina, D., Serafini, S., Steury, K., Echelard, D., Dager, S., et al. (2000). Effects of a phonologically driven treatment for dyslexia on lactate levels measured by proton MRI spectroscopic imaging. American Journal of Neuroradiology, 21, 916922.Google Scholar
Richardson, E., Kupietz, S., Winsberg, B., Maitinsky, S., & Mendell, N. (1988). Effects of methylphenidate dosage in hyperactive reading-disabled children: II. Reading achievement. Journal of the American Academy of Child & Adolescent Psychiatry, 27, 7887.Google Scholar
Roman, T., Schmitz, M., Polanczyk, G., Eizirik, M., Rohde, L., Hutz, M. A. J., et al. (2003). Is the alpha-2A adrenergic receptor gene (ADRA2A) associated with attention-deficit/hyperactivity disorder? American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 120, 116120.Google Scholar
Rumsey, J. M., Andreason, P., Zametkin, A. J., Aquino, T., King, C., Hamburber, S. D., et al. (1992). Failure to activate the left temporoparietal cortex in dyslexia. Archives of Neurology, 49, 527534.Google Scholar
Salmelin, R., Service, E., Kiesila, P., Uutela, K., & Salonen, O. (1996). Impaired visual word processing in dyslexia revealed with magnetoencephalography. Annals of Neurology, 40, 157162.Google Scholar
Schmithorst, V. J., & Holland, S. K. (2006). Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. NeuroImage, 31, 13661379.Google Scholar
Schmithorst, V. J., & Holland, S. K. (2007). Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. NeuroImage, 35, 406419.Google Scholar
Seki, A., Koeda, T., Sugihara, S., Kamba, M., Hirata, Y., Ogawa, T., et al. (2001). A functional magnetic resonance imaging study during reading in Japanese dyslexic children. Brain & Development, 23, 312316.Google Scholar
Shafritz, K. M., Marchione, K. E., Gore, J. C., Shaywitz, S. E., & Shaywitz, B. A. (2004). The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. American Journal of Psychiatry, 161, 19901997.Google Scholar
Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., et al. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of General Psychiatry 63, 540549.Google Scholar
Shaywitz, B., Shaywitz, S., Blachman, B., Pugh, K., Fulbright, R., Skudlarski, P., et al. (2004). Development of left occipito-temporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926933.Google Scholar
Shaywitz, B., Shaywitz, S., Pugh, K., Mencl, W., Fulbright, R., Skudlarski, P., et al. (2002a). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101110.Google Scholar
Shaywitz, B., Skudlarski, P., Holahan, J., Marchione, K., Constable, R., Fulbright, R., et al. (2007). Age-related changes in reading systems of dyslexic children. Annals of Neurology, 61, 363370.Google Scholar
Shaywitz, B. A., Fletcher, J. M., Holahan, J. M., & Shaywitz, S. E. (1992). Discrepancy compared to low achievement definitions of reading disability: Results from the Connecticut Longitudinal Study. Journal of Learning Disabilities, 25, 639648.Google Scholar
Shaywitz, B. A., Holford, T. R., Holahan, J. M., Fletcher, J. M., Stuebing, K. K., Francis, D. J., et al. (1995). A Matthew effect for IQ but not for reading: Results from a longitudinal study. Reading Research Quarterly, 30, 894906.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. (2002b). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101110.Google Scholar
Shaywitz, S. (2003). Overcoming dyslexia: A new and complete science-based program for reading problems at any level. New York: Alfred A. Knopf.Google Scholar
Shaywitz, S., Fletcher, J., Holahan, J., Shneider, A., Marchione, K., Stuebing, K., et al. (1999). Persistence of dyslexia: The Connecticut Longitudinal Study at adolescence. Pediatrics, 104, 13511359.Google Scholar
Shaywitz, S., Fletcher, J., & Shaywitz, B. (1994). Issues in the definition and classifiction of attention deficit disorder. Topics in Language Disorders, 14, 125.Google Scholar
Shaywitz, S., Morris, R., & Shaywitz, B. (2008). The education of dyslexic children from childhood to young adulthood. Annual Review of Psychology, 59, 451475.Google Scholar
Shaywitz, S., Shaywitz, B., Fletcher, J., & Escobar, M. (1990). Prevalence of reading disability in boys and girls: Results of the Connecticut Longitudinal Study. Journal of the American Medical Association, 264, 9981002.Google Scholar
Shaywitz, S., Shaywitz, B., Fulbright, R., Skudlarski, P., Mencl, W., Constable, R., et al. (2003). Neural systems for compensation and persistence: Young adult outcome of childhood reading disability. Biological Psychiatry, 54, 2533.Google Scholar
Shaywitz, S., Shaywitz, B., Pugh, K., Fulbright, R., Constable, R., Mencl, W., et al. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Science of the United States of America, 95, 26362641.Google Scholar
Shaywitz, S. E. (1996). Dyslexia. Scientific American, 275, 98104.Google Scholar
Shaywitz, S. E., Escobar, M. D., Shaywitz, B. A., Fletcher, J. M., & Makuch, R. (1992). Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability. New England Journal of Medicine, 326, 145150.Google Scholar
Snowling, M. (2000). Dyslexia (2nd ed.). Oxford: Blackwell.Google Scholar
Starrfelt, R., & Gerlach, C. (2007). The visual what for area: Words and pictures in the left fusiform gyrus. NeuroImage, 35, 334342.Google Scholar
Stein, J. (2003). Visual motion sensitivity and reading. Neuropsychologia, 41, 17851793.Google Scholar
Stein, J., & Walsh, V. (1997). To see but not to read; The magnocellular theory of dyslexia. Trends in Neurosciences, 20, 147152.Google Scholar
Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain & Language, 9, 182198.Google Scholar
Tallal, P. (2000). The science of literacy: From the laboratory to the classroom. Proceedings of the National Academy of Science of the United States of America, 97, 24022404.Google Scholar
Tallal, P., Miller, S., & Fitch, R. (1993). Neurobiological basis of speech: A case for the preeminence of temporal processing. Annals of the New York Academy of Science, 682, 2747.Google Scholar
Temple, E., Deutsch, G., Poldrack, R., Miller, S., Tallal, P., Merzenich, M., et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from fMRI. Proceedings of the National Academy of Science of the United States of America, 100, 28602865.Google Scholar
Temple, E., Poldrack, R., Protopapas, A., Nagarajan, S., Salz, T., Tallal, P., et al. (2000). Disruption of the neural response to rapid acoustic stimuli in dyslexia: Evidence from functional MRI. Proceedings of the National Academy of Science of the United States of America, 97, 1390713912.Google Scholar
Temple, E., Poldrack, R. A., Salidis, J., Deutsch, G. K., Tallal, P., Merzenich, M. M., et al. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: An fMRI study. NeuroReport, 12, 299307.Google Scholar
Torgesen, J., Alexander, A., Wagner, R., Rashotte, C., Voeller, K., & Conway, T. (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. Journal of Learning Disabilities, 34, 3358.Google Scholar
Torgesen, J., Wagner, R., & Rashotte, C. (1997). Approaches to the prevention and remediation of phonologically-based reading disabilities. Mahwah, NJ: Erlbaum.Google Scholar
Vaidya, C. J., Austin, G., Kirkorian, G., Ridlehuber, H. W., Desmond, J. E., Glover, G. H., et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. Proceedings of the National Academy of Science of the United States of America, 95, 1449414499.Google Scholar
Valera, E., Faraone, S., Murray, K., & Seidman, L. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61, 13611369.Google Scholar
Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 55, 143156.Google Scholar
Vinckier, F., Naccache, L., Papeix, C., Forget, J., Hahn-Barma, V., Dehaene, S., et al. (2006). “What” and “where” in word reading: Ventral coding of written words revealed by parietal atrophy. Journal of Cognitive Neuroscience, 18, 19982012.Google Scholar
Willcutt, E. G., & Pennington, B. F. (2000). Psychiatric comorbidity in children and adolescents with reading disability. Journal of Child Psychology and Psychiatry and Allied Disciplines, 41, 10391048.Google Scholar
Xu, B., Grafman, J., Gaillard, W. D., Ishii, K., Vega-Bermudez, F., Pietrini, P., et al. (2001). Conjoint and extended neural networks for the computation of speech codes: The neural basis of selective impairment in reading words and pseudowords. Cerebral Cortex, 11, 267277.Google Scholar
Xu, B., & Perfetti, C. (1999). Nonstrategic subject threshold effects in phonemic masking. Memory & Cognition, 27, 2636.Google Scholar
Xue, G., Chen, C., Jin, Z., & Dong, Q. (2006). Language experience shapes fusiform activation when processing a logographic artificial language: An fMRI training study. NeuroImage, 31, 13151326.Google Scholar