Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T10:18:12.958Z Has data issue: false hasContentIssue false

Laboratory simulation of the evolution of organic matter in dense interstellar clouds

Published online by Cambridge University Press:  01 February 2008

Vito Mennella*
Affiliation:
Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy email: mennella@na.astro.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Laboratory simulation of interstellar grain processing is a unique tool to better understand the nature and evolution of cosmic dust. In recent years this approach has been crucial to outline a new model of evolution of the aliphatic component of organic matter in the interstellar medium. Here, the results of a recent laboratory research on processing of nano-sized carbon particles by H atoms under simulated dense medium conditions are discussed. The experiments show that the formation of C-H bonds in the aliphatic CH2 and CH3 functional groups does not take place, while the activation of a band at 3.47 μm, due to the C-H stretching vibration of tertiary sp3 carbon atoms, is observed. These results indicate that the assumption about inhibition of aliphatic C-H bond formation in interstellar dense clouds is correct. Moreover, they suggest that carbon grains responsible for the interstellar aliphatic band at 3.4 μm in diffuse regions can contribute to the absorption observed at 3.47 μm in dense clouds.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allamandola, L. J., Sandford, S. A., Tielens, A. G. G. M., & Herbst, T. M. 1992, ApJ, 399, 134CrossRefGoogle Scholar
Allamandola, L. J., Sandford, S. A., Tielens, A. G. G. M., & Herbst, T. M. 1993, Science, 260, 64CrossRefGoogle Scholar
Brooke, T. Y., Sellgren, K., & Geballe, T. R. 1999, ApJ, 517, 883CrossRefGoogle Scholar
Brooke, T. Y., Sellgren, K. & Smith, R. G. 1996, ApJ, 459, 209CrossRefGoogle Scholar
Chiar, J. E., Adamson, A. J. & Whittet, D. C. B. 1996, ApJ, 472, 665CrossRefGoogle Scholar
Dartois, E., d'Hendecourt, L., Thi, W., Pontoppidan, K. M., & van Dishoeck, E. F. 2002, A&A, 394, 1057Google Scholar
Grishko, V. I. & Duley, W. W. 2000, ApJ (Letter), 543, L85CrossRefGoogle Scholar
Mennella, V. 2006, ApJ (Letter), 647, L49CrossRefGoogle Scholar
Mennella, V. 2008, ApJ (Letter), submittedGoogle Scholar
Mennella, V., Baratta, G. A., Esposito, A., Ferini, G., & Pendleton, Y. J. 2003, ApJ, 587, 727CrossRefGoogle Scholar
Mennella, V., Brucato, J. R., Colangeli, L., & Palumbo, P. 1999, ApJ, 524, L71CrossRefGoogle Scholar
Mennella, V., Brucato, J. R., Colangeli, L., & Palumbo, P. 2002, ApJ, 569, 531CrossRefGoogle Scholar
Mennella, V., Muñoz Caro, G., Ruiterkam, R., Schutte, W. A., Greenberg, J. M., Brucato, J. R., & Colangeli, L. 2001, A&A, 367, 355Google Scholar
Muñoz Caro, G., Ruiterkam, R., Schutte, W. A., Greenberg, J. M., & Mennella, V. 2001, A&A, 367, 347Google Scholar
Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., & Sellgren, K. 1994, ApJ, 437, 683CrossRefGoogle Scholar
Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., Sellgren, K., Tapia, M., & Pendleton, Y. 1991, ApJ, 371, 607CrossRefGoogle Scholar
Sellgren, K., Smith, R. G., & Brooke, T. Y. 1994, ApJ, 433, 179CrossRefGoogle Scholar