Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T00:50:00.669Z Has data issue: false hasContentIssue false

Laboratory analogs of carbonaceous matter: Soot and its precursors and by-products

Published online by Cambridge University Press:  01 February 2008

Cornelia Jäger
Affiliation:
Laboratory Astrophysics Group of the Max PlanckInstitute for Astronomy at the Institute of Solid State Physics, Friedrich Schiller UniversityJena Helmholtzweg 3, 07743 Jena, Germany email: Cornelia.Jaeger@uni-jena.de
Harald Mutschke
Affiliation:
Astrophysical Institute and University Observatory, FSU Jena Schillergässchen 3, 07745 Jena, Germany
Isabel Llamas-Jansa
Affiliation:
Astrophysical Institute and University Observatory, FSU Jena Schillergässchen 3, 07745 Jena, Germany
Thomas Henning
Affiliation:
Max Planck Institute for AstronomyKönigstuhl 17, D-69117 Heidelberg, Germany
Friedrich Huisken
Affiliation:
Laboratory Astrophysics Group of the Max PlanckInstitute for Astronomy at the Institute of Solid State Physics, Friedrich Schiller UniversityJena Helmholtzweg 3, 07743 Jena, Germany email: Cornelia.Jaeger@uni-jena.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Carbonaceous materials have been prepared in the laboratory by laser-induced pyrolysis of a mixture of hydrocarbons under different conditions and laser ablation of graphite in reactive gas atmospheres. We have investigated the soluble and insoluble parts of the condensed carbon powders with several spectroscopic and chromatographic methods in order to obtain information on the composition of the condensate. The results of these experiments have demonstrated that, at temperatures lower than 1700 K, the pyrolysis by-products are mainly PAHs, whereas at higher temperatures fullerenes and polyyne-based compounds are formed. The experimental findings point to different soot formation mechanisms with variable intermediates and end products. It has been found that soot extracts can contain more than 65 different polycyclic aromatic hydrocarbons (PAHs). Eventually, the study of the condensation pathways of soot particles and their precursors and by-products will permit the prediction of the spectral properties of carbonaceous matter in space.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allain, T., Sedlmayer, E., & Leach, S. 1997, A&A, 323, 163Google Scholar
Cherchneff, I., Barker, J. R., & Tielens, A. G. G. M. 1992, ApJ, 413, 445CrossRefGoogle Scholar
Cherchneff, I. & Cau, P. 1999, in: Betre, T. Le, Lèbre, A. & Waelkens, C. (eds.), Asymptotic Giant Branch Stars, Proc. IAU Symposium No. 191 (San Francisco: ASP), p. 251Google Scholar
Chhowalla, M., Wang, H., Sano, N., Teo, K. B. K., Lee, S. B., & Amaratunga, G. A. J. 2003, Phys. Rev. Lett., 90, 155504CrossRefGoogle Scholar
de Heer, W. A. & Ugarte, D. 1993, Chem. Phys. Lett., 207, 480CrossRefGoogle Scholar
Doubenskaia, M., Bertrand, Ph., & Smurov, I. 2006, Surface & Coatings Technology, 201, 1955CrossRefGoogle Scholar
Duley, W. W. 1994, ApJ (Letters), 430, L133CrossRefGoogle Scholar
Duley, W. W., Lazarev, S., & Scott, A. 2005, ApJ, 620, L135CrossRefGoogle Scholar
Duley, W. W. & Williams, D. 1981, MNRAS, 196, 269CrossRefGoogle Scholar
Frenklach, M. & Feigelson, E. D. 1989, ApJ, 341, 372Google Scholar
Grishko, V. I. & Duley, W. W. 2002, ApJ, 568, 448CrossRefGoogle Scholar
Herlin, N., Bohn, I., Reynaud, C., Cauchetier, M., Galvez, A., & Rouzaud, J.-N. 1998 A&A 330, 1127Google Scholar
Hony, S., Tielens, A. G. G. M., Waters, L. B. F. M., & de Koter, A. 2003, A&A, 402, 211Google Scholar
Hrivnak, B. J., Geballe, T. R., & Kwok, S. 2007, ApJ, 662, 1059CrossRefGoogle Scholar
Iida, Y. & Yeung, E. 1994, Appl. Spectr., 48, 945CrossRefGoogle Scholar
Irle, S., Zheng, G., Elstner, M., & Morokuma, K. 2003, Nano Letters 3, 1657CrossRefGoogle Scholar
Jäger, C., Henning, Th., Schlögl, R., & Spillecke, O. 1999, J. Non-Cryst. Solids 258, 161CrossRefGoogle Scholar
Jäger, C., Huisken, F., Mutschke, H., Henning, Th., Poppitz, W., & Voicu, I. 2007, Carbon, 45, 2981CrossRefGoogle Scholar
Jäger, C., Krasnokutski, S., Staicu, A., Huisken, F., Mutschke, H., Henning, Th., Poppitz, W., & Voicu, I. 2006, ApJS, 166, 557CrossRefGoogle Scholar
Jäger, C., Mutschke, H., Henning, Th., & Huisken, F. 2008, ApJ, submittedGoogle Scholar
Kojima, H. & Naito, K. 1981, Ind. Eng. Chem. Prod. Res. Dev., 20, 396CrossRefGoogle Scholar
Kroto, H. W. & McKay, K. 1988, Nature, 331, 328CrossRefGoogle Scholar
Kwok, S., Volk, K., & Bernath, P. 2001, ApJ (Letters), 55, L87CrossRefGoogle Scholar
Llamas-Jansa, I., Jäger, C., Mutschke, H., & Henning, Th. 2007, Carbon, 45, 1542CrossRefGoogle Scholar
Mennella, V., Colangeli, L., Palumbo, P., Rotundi, A., Schutte, W., & Bussoletti, E. 1996, ApJ, 464, L191CrossRefGoogle Scholar
Papoular, R. 2001, A&A, 378, 597Google Scholar
Papoular, R., Conrad, J., Giuliano, M., Kister, J., & Mille, G. 1989, A&A, 217, 204Google Scholar
Pendleton, Y. J. & Allamandola, L. J. 2002, ApJS, 138, 75CrossRefGoogle Scholar
Sakata, A., Wada, S., Okutsu, Y., Shintani, H., & Nakada, Y. 1983, Nature, 301, 493Google Scholar
Schnaiter, M., Henning, Th., Mutschke, H., Kohn, B., Ehbrecht, M., & Huisken, F. 1999, ApJ, 519, 687CrossRefGoogle Scholar
Schnaiter, M., Mutschke, H., Dorschner, J., Henning, Th., & Salama, F. 1998, ApJ, 498, 486CrossRefGoogle Scholar
Tomita, S., Fujii, M., & Hayashi, S. 2002, Phys. Rev. B, 66, 245424CrossRefGoogle Scholar
Wada, S., Kaito, Ch., Kimura, S., Ono, H., & Tokunaga, A. T. 1999 A&A, 345, 259Google Scholar
Zheng, G., Irle, S., & Morokuma, K. 2005, J. Chem. Phys., 122, 014708CrossRefGoogle Scholar