Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T18:55:14.711Z Has data issue: false hasContentIssue false

Organic matter in the Solar System: From colors to spectral bands

Published online by Cambridge University Press:  01 February 2008

Dale P. Cruikshank*
Affiliation:
NASA Ames Research CenterMS 245-6Moffett Field, CA 94035USA email: Dale.P.Cruikshank@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The reflected spectral energy distribution of low-albedo, red-colored, airless bodies in the outer Solar System (planetary satellites, Centaur objects, Kuiper Belt objects, bare comet nuclei) can be modeled with spectral models that incorporate the optical properties of refractory complex organic materials synthesized in the laboratory and called tholins. These materials are strongly colored and impart their color properties to the models. The colors of the bodies cannot be matched with plausible minerals, ices, or metals. Iapetus, a satellite of Saturn, is one such red-colored body that is well matched with tholin-rich models. Detection of aromatic and aliphatic hydrocarbons on Iapetus by the Cassini spacecraft, and the presence of these hydrocarbons in the tholins, is taken as evidence for the widespread presence of solid organic complexes aromatic and aliphatic units on many bodies in the outer Solar System. These organic complexes may be compositionally similar to the insoluble organic matter in some classes of the carbonaceous meteorites, and thus may ultimately derive from the organic matter in the interstellar medium.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Barucci, M. A., Cruikshank, D. P., Dotto, E., Ferlin, F., Poulet, F., DalleOre, C. Ore, C., Fornasier, S., & de Bergh, C. 2005, A&A (Letter), 439, L1Google Scholar
Barucci, M. A., Doressoundiram, A., & Cruikshank, D. P. 2004, in: Festou, M., Keller, H., and Weaver, H. (eds.), Comets II, (Tucson: Univ. Arizona Press), p. 647CrossRefGoogle Scholar
Barucci, M. A., Fulchignoni, M., Birlan, M., Doressoundiram, A., Romon, J., & Boehnhardt, H. 2001, A&A, 371, 1150Google Scholar
Bernard, J-M, Quirico, E., Brissaud, O., Montagnac, G., Reynard, B., McMillan, P., Coll, P., Nguyen, M-J., Raulin, F., & Schmitt, B. 2006, Icarus, 185, 301CrossRefGoogle Scholar
Brown, R. H. et al. 2004, Space Sci. Rev., 115, 111CrossRefGoogle Scholar
Brown, R. H. et al. 2006, A&A, 446, 707Google Scholar
Buratti, B. J., Cruikshank, D. P., & the VIMS Team 2005, ApJ (Letters), 622, L149CrossRefGoogle Scholar
Chapman, C. R., Morrison, D., & Zellner, B. 1975, Icarus, 25, 104CrossRefGoogle Scholar
Clark, R. N. et al. 2005, Nature, 435, 66CrossRefGoogle Scholar
Clark, R. N. et al. 2008, Icarus, 193, 372CrossRefGoogle Scholar
Coradini, A. et al. 2008, Icarus, 193, 233CrossRefGoogle Scholar
Cruikshank, D. P. & Dalle Ore, C. M. 2003, Earth, Moon, Planets, 92, 315CrossRefGoogle Scholar
Cruikshank, D. P., Imanaka, H., & Dalle Ore, C. M. 2005, Adv. Space Res., 36, 178CrossRefGoogle Scholar
Cruikshank, D. P. & Morrison, D. 1974, Icarus, 20, 477CrossRefGoogle Scholar
Cruikshank, D. P., et al. 1998, Icarus, 135, 389CrossRefGoogle Scholar
Cruikshank, D. P., et al. 2007, Nature, 448, 54CrossRefGoogle Scholar
Cruikshank, D. P., et al. 2008, Icarus, 193, 344CrossRefGoogle Scholar
Degewij, J., Cruikshank, D. P., & Hartmann, W. K. 1980, Icarus, 44, 541CrossRefGoogle Scholar
Gradie, J. & Veverka, J. 1980, Nature, 283, 840CrossRefGoogle Scholar
Hartmann, W. K., Cruikshank, D. P., & Degewij, J. 1982, Icarus, 52, 377CrossRefGoogle Scholar
Imanaka, H. et al. 2004, Icarus, 168, 344CrossRefGoogle Scholar
Jones, A. P. 1990, MNRAS, 247, 305Google Scholar
Kerridge, J., Chang, S., & Shipp, R. 1987, Geochim. Cosmochim. Acta, 51, 2527.CrossRefGoogle Scholar
Khare, B. N. et al. 1984, Icarus, 60, 127CrossRefGoogle Scholar
Mennella, V. et al. 2002, ApJ, 569, 531CrossRefGoogle Scholar
MacDonald, G. D., Thompson, W. R., Heinrich, M. et al. 1994, Icarus, 108, 137CrossRefGoogle Scholar
Morrison, D. 1973, Icarus, 19, 1CrossRefGoogle Scholar
Owen, T. C. et al. 2001, Icarus, 149, 160CrossRefGoogle Scholar
Pendleton, Y. J. & Allamandola, L. J. 2002, ApJS, 138, 75CrossRefGoogle Scholar
Pendleton, Y. J., et al. 1994, ApJ, 437, 683CrossRefGoogle Scholar
Sagan, C. & Khare, B. N. 1979, Nature, 277, 102CrossRefGoogle Scholar
Yabuta, H. et al. 2007, LPSC XXXVIII, abstract 2304.pdfGoogle Scholar
Zellner, B., Tholen, D. J., & Tedesco, E. F. 1985, Icarus, 61, 355CrossRefGoogle Scholar