Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-19T05:42:38.429Z Has data issue: false hasContentIssue false

Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica

Published online by Cambridge University Press:  05 September 2008

E. TONER
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences
G. P. BRENNAN
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences
K. WELLS
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences
J. G. McGEOWN
Affiliation:
Basic Medical Sciences, School of Medicine and Dentistry, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast, Northern IrelandBT9 7BL
I. FAIRWEATHER*
Affiliation:
Parasite Proteomics and Therapeutics Research Group, School of Biological Sciences
*
*Corresponding author: School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast, Northern IrelandBT9 7BL. Tel: +44-28-90972298. Fax: +44-28-90975877. E-mail: i.fairweather@qub.ac.uk

Summary

A study has been carried out to determine the activity of genistein against adult liver fluke, Fasciola hepatica. Flukes were incubated in vitro in genistein at a concentration of 0·27 mg/ml (=1 mm). They ceased to move after 3 h, at which point the experiment was terminated and the specimens prepared for examination by scanning and transmission electron microscopy. Surface changes to the flukes comprised swelling and blebbing, especially in the posterior region of the flukes, and there was particular disruption to the spines, accompanied by some spine loss. Fine structural changes to the tegumental syncytium indicated an accelerated release of secretory bodies at the surface, but a reduction in their production within the cell bodies. Autophagic activity was evident in the tegumental cells, a phenomenon that was also observed in the gastrodermal cells. Disruption to the testis and vitelline follicles was severe, with an apparent block in the normal developmental sequence of the spermatogenic and vitelline cells, respectively. Shell protein production by the vitelline cells was also disrupted. In separate experiments, somatic muscle strips were exposed to concentrations of genistein ranging from 1 μm to 1 mm. There were statistically significant increases in the frequency and/or amplitude of muscle contractions at concentrations of 10 μm, 100 μm and 1 mm. The results suggest that genistein is capable of causing severe morphological and neuromuscular disruption to adult flukes in vitro over a short time-span.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, R. (2000). Cell signalling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochemical Pharmacology 60, 10511059.Google Scholar
Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M. and Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. Journal of Biological Chemistry 262, 55925595.Google Scholar
Alvarez-Sanchez, M. A., Mainar-Jaime, R. C., Perez-Garcia, J. and Rojo-Vasquez, F. A. (2006). Resistance of Fasciola hepatica to triclabendazole and albendazole in sheep in Spain. Veterinary Record 159, 424425.Google Scholar
Anderson, H. R. and Fairweather, I. (1988) Fasciola hepatica: scanning electron microscopic observations of juvenile flukes following treatment in vitro with the deacetylated (amine) metabolite of diamphenethide (DAMD). International Journal for Parasitology 18, 827837.Google Scholar
Anthony, J. P., Fyfe, L. and Smith, H. (2005). Plant active components – a resource for antiparasitic agents? Trends in Parasitology 21, 462468.Google Scholar
Balunas, M. J. and Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences 78, 431441.Google Scholar
Bennett, C. E. (1975). Scanning electron microscopy of Fasciola hepatica L. during migration in the mouse. Journal of Parasitology 61, 892898.Google Scholar
Brennan, G. P., Fairweather, I., Trudgett, A., Hoey, E. M., McCoy, M., McConville, M., Meaney, M., Robinson, M., McFerran, N., Ryan, L., Lanusse, C., Mottier, L., Alvarez, L., Solana, H., Virkel, G. and Brophy, P. M. (2007). Understanding triclabendazole resistance. Experimental and Molecular Pathology 82, 104109.Google Scholar
Buchanan, J. F., Fairweather, I., Brennan, G. P., Trudgett, A. and Hoey, E. M. (2003). Fasciola hepatica: surface and internal tegumental changes induced by treatment in vitro with the sulphoxide metabolite of albendazole (‘Valbazen’). Parasitology 126, 141153.Google Scholar
Buenz, E. J., Schnepple, D. J., Bauer, B. A., Elkin, P. L., Riddle, J. M. and Motley, T. J. (2004). Techniques: Bioprospecting historical herbal texts by hunting for new leads in old tomes. Trends in Pharmacological Sciences 25, 494498.Google Scholar
Buenz, E. J., Bauer, B. A., Johnson, H. E., Tavana, G., Beekman, E. M., Frank, K. L. and Howe, C. L. (2006). Searching historical texts for potential new drugs. British Medical Journal 333, 2330.Google Scholar
Chin, Y., Balunas, M., Chai, L. B. and Kinghorn, D. A. (2006). Drug discovery from natural sources. The AAPS Journal 8, 239253.Google Scholar
Colhoun, L. M., Fairweather, I., Brennan, G. P. and Woods, M. M. (1998). Observations on the mechanism of eggshell formation in the liver fluke, Fasciola hepatica. Parasitology 116, 555567.Google Scholar
Crump, A. (2006). New medicines from nature's armamentarium. Trends in Parasitology 22, 5154.Google Scholar
Das, B., Tandon, V. and Saha, N. (2004). Effects of phytochemicals of Flemingia vestita (Fabaceae) on glucose 6-phosphate dehydrogenase and enzymes of gluconeogenesis in a cestode (Raillietina echinobothrida). Comparative Biochemistry and Physiology 139C, 141146.Google Scholar
Das, B., Tandon, V. and Saha, N. (2006). Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl. Parasitology International 55, 1721.Google Scholar
Das, B., Tandon, V. and Saha, N. (2007). Genistein from Flemingia vestita (Fabaceae) enhances NO and its mediator (cGMP) production in a cestode parasite, Raillietina echinobothrida. Parasitology 134, 14571463.Google Scholar
Delclos, K. B., Bucci, T. J., Lomax, L. G., Latendresse, J. R., Warbritton, A., Weis, C. C. and Newbold, R. R. (2001). Effects of dietary genistein exposure during development on male and female CD (Sprague-Dawley) rats. Reproductive Toxicology 15, 647663.Google Scholar
Dissous, C., Khayath, N., Vicogne, J. and Capron, M. (2006). Growth factor receptors in helminth parasites: signalling and host-parasite relationships. FEBS Letters 580, 29682975.Google Scholar
Dixon, R. A. and Ferreira, D. (2002). Genistein. Phytochemistry 60, 205211.Google Scholar
Fairweather, I. (2005). Triclabendazole: new skills to unravel an old(ish) enigma. Journal of Helminthology 79, 227234.Google Scholar
Fairweather, I. and Boray, J. C. (1999). Fasciolicides: efficacy, actions, resistance and its management. Veterinary Journal 158, 81112.Google Scholar
Fairweather, I., Threadgold, L. T. and Hanna, R. E. B. (1999). Development of Fasciola hepatica in the mammalian host. In Fasciolosis (ed. Dalton, J. P.), pp. 47111. CAB International, Wallingford, Oxon.Google Scholar
Graham, M. K., McGeown, J. G. and Fairweather, I. (1999). Ionic mechanisms underlying spontaneous muscle contractions in the liver fluke, Fasciola hepatica. American Journal of Physiology 277, R374R383.Google Scholar
Graham, M. K., Fairweather, I. and McGeown, J. G. (2000). Second messengers mediating mechanical responses to the FaRP GYIRFamide in the fluke, Fasciola hepatica. American Journal of Physiology 279, R2089R2094.Google Scholar
Gorchilova, L., Poljakova, K. O., Spaldonova, R. and Vinarova, M. (1990). Structural and functional characteristics of the tegument and intestinal wall in mature Fasciola hepatica after treatment with luxabendazole. Helminthologica 27, 7990.Google Scholar
Hammond, J. A., Fielding, D. and Bishop, S. C. (1997). Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications 21, 213228.Google Scholar
Hegazagi, A. G., Abd El Hady, F. K. and Shalaby, H. A. (2007). An in vitro effect of propolis on adult worms of Fasciola gigantica. Veterinary Parasitology 114, 279286.Google Scholar
Iqbal, Z., Akhtar, M. S., Sindhu, Z., Khan, M. and Jabbar, A. (2003). Herbal dewormers in livestock – a traditional therapy. International Journal of Agriculture and Biology 2, 219–206.Google Scholar
Iqbal, Z., Lateef, M., Ashraf, M. and Jabbar, A. (2004). Anthelmintic activity of Artemisia brevifolia in sheep. Journal of Ethnopharmacology 93, 265268.Google Scholar
Irwin, S. W. B. and Threadgold, L. T. (1970). Electron microscope studies on Fasciola hepatica. VIII. The development of the vitelline cells. Experimental Parasitology 28, 399411.Google Scholar
Kar, P. K. and Tandon, V. (2000). Anthelmintic efficacy of Flemingia vestita (Fabaceae): genistein induced effect on the nervous components in two digenetic trematodes. Journal of Parasitic Diseases 24, 141146.Google Scholar
Kar, P. K. and Tandon, V. (2004). Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the activity of the enzymes associated with the tegumental and gastrodermal interfaces of the trematode, Fasciolopsis buski. Journal of Parasitic Diseases 28, 4556.Google Scholar
Kar, P. K., Tandon, V. and Saha, N. (2002). Anthelmintic efficacy of Flemingia vestita: genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, Fasciolopsis buski. Parasitology International 51, 249257.Google Scholar
Kar, P. K., Tandon, V. and Saha, N. (2004). Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): alterations in the free amino acid pool and ammonia levels in the fluke, Fasciolopsis buski. Parasitology International 53, 287291.Google Scholar
Kayser, O., Kiderlen, A. F. and Croft, S. L. (2003). Natural products as antiparasitic drugs. Parasitology Research 90, 5562.Google Scholar
Keiser, J. and Utzinger, J. (2004). Chemotherapy for major food-borne trematodes: a review. Expert Opinion in Pharmacotherapy 5, 17111726.Google Scholar
Keiser, J. and Utzinger, J. (2005). Emerging foodborne trematodiasis. Emerging Infectious Diseases 11, 15031510.Google Scholar
Khan, I. A., Avery, M. A., Burandt, C. L., Goins, D. K., Mikell, J. R., Nash, T. E., Azadegan, A. and Walker, L. A. (2000). Antigiardial activity of isoflavones from Dalbergia frutescens bark. Journal of Natural Products 63, 14141416.Google Scholar
Knobloch, J., Beckmann, S., Burmeister, C., Quack, T. and Grevelding, C. G. (2007). Tyrosine kinase and cooperative TGFβ signaling in the reproductive organs of Schistosoma mansoni. Experimental Parasitology 111, 318336.Google Scholar
Lyddiard, J. R. A., Whitfield, P. J. and Bartlett, A. (2002). Antischistosomal bioactivity of isoflavonoids from Millettia thonningii (Leguminosae). Journal of Parasitology 88, 163170.Google Scholar
McConville, M., Brennan, G. P., McCoy, M. A., Castillo, R., Hernandez-Campos, A., Ibarra, F. and Fairweather, I. (2006). Adult triclabendazole-resistant Fasciola hepatica: surface and subsurface tegumental responses to in vitro treatment with the sulphoxide metabolite of the experimental fasciolicide compound alpha. Parasitology 133, 195208.Google Scholar
McCoy, M. A., Fairweather, I., Brennan, G. P., Kenny, J. M., Ellison, S. and Forbes, A. F. (2005). The efficacy of nitroxynil and triclabendazole administered synchronously against juvenile triclabendazole-resistant Fasciola hepatica in sheep. Research in Veterinary Sciences 78 (Suppl A), 33.Google Scholar
McKinstry, B., Fairweather, I., Brennan, G. P. and Forbes, A. B. (2003). Fasciola hepatica: tegumental surface alterations following treatment in vivo and in vitro with nitroxynil (Trodax). Parasitology Research 91, 251263.Google Scholar
McKinstry, B., Brennan, G. P., Halferty, L., Forbes, A. B. and Fairweather, I. (2007). Ultrastructural changes induced in the tegument and gut of Fasciola hepatica following in vivo and in vitro drug treatment with nitroxynil (Trodax). Parasitology Research 101, 929941.Google Scholar
Mas-Coma, S., Bargues, M. D. and Valero, M. A. (2005). Fascioliasis and other plant-borne trematode zoonoses. International Journal for Parasitology 35, 12551278.Google Scholar
Matsukawa, Y., Marui, N., Sakai, T., Satomi, Y., Yoshida, M., Matsumoto, K., Nishino, H. and Aoike, A. (1993). Genistein arrests cell-cycle progression at G2-M. Cancer Research 53, 13281331.Google Scholar
Meaney, M., Allister, J., McKinstry, B., McLaughlin, K., Brennan, G. P., Forbes, A. B. and Fairweather, I. (2006). Fasciola hepatica: morphological effects of a combination of triclabendazole and clorsulon against mature fluke. Parasitology Research 99, 609621.Google Scholar
Meaney, M., Allister, J., McKinstry, B., McLaughlin, K., Brennan, G. P., Forbes, A. B. and Fairweather, I. (2007). Fasciola hepatica: ultrastructural effects of a combination of triclabendazole and clorsulon against mature fluke. Parasitology Research 100, 10911104.Google Scholar
Meaney, M., Fairweather, I., Brennan, G. P. and Forbes, A. B. (2004). Transmission electron microscope study of the ultrastructural changes induced in the tegument and gut of Fasciola hepatica following treatment with clorsulon. Parasitology Research 92, 232241.Google Scholar
Meaney, M., Fairweather, I., Brennan, G. P., McDowell, L. S. L. and Forbes, A. B. (2003). Fasciola hepatica: effects of the fasciolicide clorsulon in vitro and in vivo on the tegumental surface, and a comparison of the effects on young- and old-mature flukes. Parasitology Research 91, 238250.Google Scholar
Meaney, M., Haughey, S., Brennan, G. P. and Fairweather, I. (2005 a). A scanning electron microscope study on the route of entry of clorsulon into the liver fluke, Fasciola hepatica. Parasitology Research 95, 117128 and 96, 189198.Google Scholar
Meaney, M., Haughey, S., Brennan, G. P. and Fairweather, I. (2005 b). Ultrastructural observations on oral ingestion and trans-tegumental uptake of clorsulon by the liver fluke, Fasciola hepatica. Parasitology Research 95, 201212.Google Scholar
Mitchell, G. B. (2002). Update on fascioliasis in cattle and sheep. In Practice 4, 7885.Google Scholar
Naguleswaran, A., Spicher, M., Vonlaufen, N., Ortega-Mora, L. M., Torgerson, P., Gottstein, B. and Hempill, A. (2006). In vitro metacestodicidal activities of genistein and other isoflavones against Echinococcus multilocularis and Echinococcus granulosus. Antimicrobial Agents and Chemotherapy 50, 37703778.Google Scholar
Newman, D. J. and Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70, 461477.Google Scholar
Pal, P. and Tandon, V. (1998 a). Anthelmintic efficacy of Flemingia vestita (Leguminoceae): genistein-induced alterations in the activity of tegumental enzymes in the cestode, Raillietina echinobothrida. Parasitology International 47, 233243.Google Scholar
Pal, P. and Tandon, V. (1998 b). Anthelmintic efficacy of Flemingia vestita (Fabaceae): genistein-induced alterations in the esterase activity in the cestode, Raillietina echinobothrida. Journal of Bioscience 23, 2531.Google Scholar
Pritchard, G. C., Forbes, A. C., Williams, D. J. L., Salimi-Bejestani, M. R. and Daniel, R. G. (2005) Emergence of fasciolosis in cattle in East Anglia. Veterinary Record 157, 578582.Google Scholar
Rao, R. R. (1981). Ethnobotany of Meghalaya: medicinal plants used by Khasi and Garo tribes. Economic Botany 35, 49.Google Scholar
Robinson, G. and Threadgold, L. T. (1975). Electron microscope studies of Fasciola hepatica. XIII. The fine structure of the gastrodermis. Experimental Parasitology 37, 2036.Google Scholar
Robinson, M. W., Trudgett, A., Hoey, E. M. and Fairweather, I. (2002). Triclabendazole-resistant Fasciola hepatica: β-tubulin and response to in vitro treatment with triclabendazole. Parasitology 124, 325338.Google Scholar
Robinson, R. D., Williams, L. A. D., Lindo, J. F., Terry, S. I. and Mansingh, A. (1990). Inactivation of Strongyloides stercoralis filariform larvae in vitro by six Jamaican plant extracts and three commercial anthelmintics. West Indian Medical Journal 39, 213217.Google Scholar
Rogan, M. T. and Threadgold, L. T. (1984). Fasciola hepatica: tegumental changes as a result of lectin binding. Experimental Parasitology 57, 248260.Google Scholar
Roy, B. and Tandon, V. (1996). Effect of root-tuber extract of Flemingia vestita, a leguminous plant, on Artyfechinostomum surfartyfex and Fasciolopsis buski: a scanning electron microscopy study. Parasitology Research 82, 248252.Google Scholar
Sarkar, F. H. and Li, Y. W. (2004). Cell signaling pathways altered by natural chemopreventive agents. Mutation Research 555, 5364.Google Scholar
Sarkar, F. H., Adsule, S., Padhye, S., Kulkarni, S. and Li, Y. (2006). The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Reviews in Medicinal Chemistry 6, 401407.Google Scholar
Singletary, K. W., Frey, R. S. and Li, J. Y. (2002). Differential effects of genistein on cell proliferation, cyclin B1, and p34cdc2 in transformed and nontransformed human breast cells. Pharmaceutical Biology 40 (Suppl.), 3542.Google Scholar
Siow, R. C. M., Li, F. Y. L., Rowlands, D. J., Winter, P. D. E. and Mann, G. E. (2007). Cardiovascular targets for estrogens: transcriptional regulation on nitric oxide synthase and antioxidant defense genes. Free Radical Biology and Medicine 42, 909925.Google Scholar
Song, M. and Gutzeit, H. O. (2003). Primary culture of medaka (Oryzias latipes) testis: a test system for the analysis of cell proliferation and differentiation. Cell and Tissue Research 313, 107115.Google Scholar
Stepek, G., Lowe, A. E., Buttle, D. J., Duce, I. R. and Behnke, J. M. (2007). In vitro anthelmintic effects of cysteine proteinases from plants against intestinal helminths of rodents. Journal of Helminthology 81, 353360.Google Scholar
Stitt, A. W. and Fairweather, I. (1990). Spermatogenesis and the fine structure of the mature spermatozoon of the liver fluke, Fasciola hepatica (Trematoda: Digenea). Parasitology 101, 395407.Google Scholar
Stitt, A. W. and Fairweather, I. (1994). The effect of the sulphoxide metabolite of triclabendazole (‘Fasinex’) on the tegument of mature and immature stages of the liver fluke, Fasciola hepatica. Parasitology 108, 555567.Google Scholar
Stitt, A. W. and Fairweather, I. (1996). Fasciola hepatica: disruption of the vitelline cells in vitro by the sulphoxide metabolite of triclabendazole. Parasitology Research 82, 333339.Google Scholar
Svechnikov, K., Supornsilchai, V., Strand, M. L., Wahlgren, A., Seidlova-Wuttke, D. and Söder, O. (2005). Influence of long-term dietary administration of procymidone, a fungicide with anti-androgenic effects, or the phytoestrogen genistein to rats on the pituitary-gonadal axis and Leydig cell steroidogenesis. Journal of Endocrinology 187, 117124.Google Scholar
Tandon, V. and Das, B. (2007). In vitro testing of anthelmintic efficacy of Flemingia vestita (Fabaceae): effect of genistein on carbohydrate metabolism in the cestode, Raillietina echinobothrida. Natural Product Research 42, 330338.Google Scholar
Tandon, V., Das, B. and Saha, N. (2003). Anthelmintic efficacy of Flemingia vestita (Fabaceae): effect of genistein on glycogen metabolism in the cestode, Raillietina echinobothrida Parasitology International 52, 179183.Google Scholar
Tandon, V., Pal, P., Roy, B., Rao, H. S. P. and Reddy, K. S. (1997). In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong, India. Parasitology Research 83, 492498.Google Scholar
Threadgold, L. T. (1963). The tegument and associated structures of Fasciola hepatica. Quarterly Journal of Microscopical Science 104, 505512.Google Scholar
Threadgold, L. T. (1967). Electron-microscope studies of Fasciola hepatica. III. Further observations on the tegument and associated structures. Parasitology 57, 633637.Google Scholar
Watanabe, S., Uesugi, S. and Kikuchi, Y. (2002). Isoflavones for prevention of cancer, cardiovascular diseases, gynaecological problems and possible immune potentiation. Biomedical Pharmacotherapy 56, 302312.Google Scholar
Wells, K. (2008). Ion channels and control of motility in the liver fluke, Fasciola hepatica. Ph.D. thesis, The Queen's University of Belfast, Belfast.Google Scholar
Yadav, A. K., Tandon, V. and Rao, H. S. P. (1992). In vitro anthelmintic activity of fresh tuber extract of Flemingia vestita against Ascaris suum. Fitoterapia 63, 395398.Google Scholar