Mathematical Proceedings of the Cambridge Philosophical Society



A Legendrian surgery presentation of contact 3-manifolds


FAN DING a1 and HANSJÖRG GEIGES a2
a1 Department of Mathematics, Peking University, Beijing 100871, P. R. China. e-mail: dingfan@math.pku.edu.cn
a2 Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany. e-mail: geiges@math.uni-koeln.de

Article author query
ding f   [Google Scholar] 
geiges h   [Google Scholar] 
 

Abstract

We prove that every closed, connected contact 3-manifold can be obtained from $S^3$ with its standard contact structure by contact (${\pm}1$)-surgery along a Legendrian link. As a corollary, we derive a result of Etnyre and Honda about symplectic cobordisms (in a slightly stronger form).

(Received January 29 2003)