Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T17:56:42.968Z Has data issue: false hasContentIssue false

Amenable actions of discrete groups

Published online by Cambridge University Press:  19 September 2008

G. A. Elliott
Affiliation:
Mathematics Institute, Universitetsparken 5, 2100 Copenhagen ø, Denmark and Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1
T. Giordano
Affiliation:
Section de Mathématiques, Université de Genève, CH-1211 Genève 24, Switzerland

Abstract

A structure theorem is established for amenable actions of a countable discrete group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A]Azoff, E. A.. Borel maps on sets of von Neumann algebras. J. Oper. Theory 9 (1983), 319340.Google Scholar
[B]Bourbaki, N.. Espaces Vectoriels Topologiques. Masson, Paris, 1981, Ch. 15.Google Scholar
[C1]Connes, A.. Classification of injective factors. Ann. Math. 104 (1976), 73115.Google Scholar
[C2]Connes, A.. On hyperfinite factors of type III0 and Krieger's factors. J. Fund. Anal. 18 (1975), 318327.Google Scholar
[CFW]Connes, A., Feldman, J. & Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys. 1 (1981), 431450.Google Scholar
[CW]Connes, A. & Woods, E. J.. Hyperfinite von Neumann algebras and Poisson boundaries of time deoendent random walks. Pacific J. Math. 137 (1989), 225243.Google Scholar
[Ch]Christensen, J. P. R.. Topology and Borel Structure. North-Holland, Amsterdam, 1974.Google Scholar
[D]Dixmier, J.. Les algèbres d'opérateurs dans l'espace hilbertien. Gauthiers-Villars, Paris, 1969.Google Scholar
[E]Edwards, R. E.. Functional Analysis. Holt, Rinehart and Winston, 165.Google Scholar
[FSZ]Feldman, J., Sutherland, C. E. & Zimmer, R. J.. Subrelations of ergodic equivalence relations. Ergod. Th. & Dynam. Sys. 9 (1989), 239269.Google Scholar
[FM]Feldman, J. & Moore, C. C.. Ergodic equivalence relations, cohomology and von Neumann algebras I. Trans. Amer. Math. Soc. 234 (1977), 289324.Google Scholar
[H1]Hahn, P.. The regular representations of measure groupoids. Trans. Amer. Math. Soc. 242 (1978), 3572.Google Scholar
[H2]Hahn, P.. The σ-representation of amenable groupoids. Rocky Mountain J. Math. 9 (1979), 631639.Google Scholar
[HS]Hewitt, E. & Stromberg, K.. Real and Abstract Analysis. Springer, Berlin, 1969.Google Scholar
[J]Jaworski, W.. Poisson and Furstenberg boundaries of random walks. PhD thesis. Queen's University at Kingston, 1991.Google Scholar
[NB]Narici, L. & Beckenstein, E.. Topological vector spaces. Dekker, New York, 1985.Google Scholar
[N]Neveu, J.. Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco, 1965.Google Scholar
[R]Ramsay, A.. Virtual groups and group actions. Adv. Math. 6 (1971), 253322.Google Scholar
[Sch]Schmidt, K.. Cocycles on Ergodic Transformation Groups. Macmillan Lectures in Mathematics, New Delhi, 1977.Google Scholar
[Se]Series, C.. An application of groupoid cohomology. Pacific J. Math. 92 (1981), 415432.Google Scholar
[Sh]Shiryayev, A. N.. Probability. Springer, Berlin, 1984.Google Scholar
[S1]Sutherland, C. E.. A Borel parametrization of Polish groups. Publ. Res. Inst. Math. Sci. 21 (1985), 10671086.Google Scholar
[S2]Sutherland, C. E.. Nested pairs of equivalence relations and von Neumann algebras. Preprint. University of New South Wales.Google Scholar
[S3]Sutherland, C. E.. Preliminary report on Bratteli diagrams. Private communication.Google Scholar
[ST]Sutherland, C. E. & Takesaki, M.. Actions of discrete amenable groups and groupoids on von Neumann algebras. Publ. Res. Inst. Math. Sci. 21 (1985), 10871120.Google Scholar
[St]Stratila, S.. Modular Theory in Operator Algebras. Abacus Press, Kent, 1981.Google Scholar
[Z1]Zimmer, R. J.. Amenable ergodic group actions and an application to Poisson boundaries of random walks. J. Fund. Anal. 27 (1978), 350372.Google Scholar
[Z2]Zimmer, R. J.. Hyperfinite factors and amenable ergodic actions. Invent. Math. 41 (1977), 2331.Google Scholar
[Z3]Zimmer, R. J.. Ergodic Theory and Semisimple Groups. Birkhäuser, Basel, 1984.Google Scholar