Theory and Practice of Logic Programming



Regular Papers

Applications of intuitionistic logic in Answer Set Programming


MAURICIO OSORIO a1, JUAN A. NAVARRO a2 and JOSÉ ARRAZOLA a2
a1 Universidad de las Américas, CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México (e-mail: josorio@mail.udlap.mx)
a2 Universidad de las Américas, CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

Article author query
osorio m   [Google Scholar] 
navarro j   [Google Scholar] 
arrazola j   [Google Scholar] 
 

Abstract

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.


Key Words: answer sets; intuitionistic logic; equivalence; program transformations.