Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T09:06:19.223Z Has data issue: false hasContentIssue false

The determination of convex bodies from the mean of random sections

Published online by Cambridge University Press:  24 October 2008

Paul Goodey
Affiliation:
Mathematics Department, University of Oklahoma, Norman, Oklahoma 73019, U.S.A.
Wolfgang Weil
Affiliation:
Mathematisches Institut II, Universität Karlsruhe, Englerstrasse 2, 7500 Karlsruhe 1, Germany

Extract

Random sectioning of particles (compact sets in ℝ3 with interior points) is a familiar procedure in stereology where it is used to estimate particle quantities like volume or surface area from planar or linear sections (see, for example, the survey [23] or the book [20]). In the following, we study the problem whether the whole shape of a convex particle K can be estimated from random sections. If E is an IUR (isotropic, uniform, random) line or plane intersecting K then the intersection Xk = KE is a (k-dimensional, k = 1 or 2) random set. It is clear that the distribution of Xk determines K uniquely and that if E1,…, En are such flats, the most natural estimator for K would be the convex hull

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adler, R. J. and Pyke, R.. Problem 91–3. IMS Bulletin 20 (1991), 406407.Google Scholar
[2]Artstein, Z. and Vitale, R. A.. A strong law of large numbers for random compact sets. Ann. Probab. 5 (1975), 879882.Google Scholar
[3]Bonnesen, T. and Fenchel, W.. Theorie der Konvexen Körper (Springer-Verlag, 1934).Google Scholar
[4]Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, E. G.. Higher Transcendental Functions, vol. 2 (McGraw-Hill, 1953).Google Scholar
[5]Goodey, P. and Weil, W.. Translative integral formulae for convex bodies. Aequationes Math. 34 (1987), 6477.CrossRefGoogle Scholar
[6]Goodey, P. and Weil, W.. Integral geometric formulae for projection functions. Geom. Dedicata 41 (1992), 117126.CrossRefGoogle Scholar
[7]Kingman, J. F. C.. Random secants of a convex body. J. Appl. Probab. 6 (1969), 660672.CrossRefGoogle Scholar
[8]Leichtweiβ, K.. Konvexe Mengen (Springer-Verlag, 1980).CrossRefGoogle Scholar
[9]Little, J. J.. An iterative method for reconstructing convex polyhedra from extended Gaussian images. In Proceedings American Association for Artificial Intelligence (AAAI, 1983). pp. 247250.Google Scholar
[10]Mallows, C. and Clark, J.. Linear-intercept distributions do not characterize plane sets. J. Appl. Probab. 7 (1970), 240244.CrossRefGoogle Scholar
[11]Matheron, G.. Random Sets and Integral Geometry (Wiley, 1975).Google Scholar
[12]Müller, C.. Spherical Harmonics (Springer-Verlag, 1966).CrossRefGoogle Scholar
[13]Nagel, W.. Orientation dependent chord length distributions characterize convex polygons, submitted.Google Scholar
[14]Schneider, R.. Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z. 101 (1967), 7182.CrossRefGoogle Scholar
[15]Schneider, R.. Über eine Integralgleichung in der Theorie der konvexen Körper. Math. Nachr. 44 (1970), 5575.CrossRefGoogle Scholar
[16]Schneider, R.. Rekonstruktion eines konvexen Körpers aus seinen Projektionen. Math. Nachr. 79 (1977), 325329.CrossRefGoogle Scholar
[17]Schneider, R.. Boundary structure and curvature of convex bodies. In Contributions to Geometry, Proc. Geometry Sympos. Siegen 1978 (editors Tölke, J. and Wills, J. M.) (Birkhäuser, 1979). pp. 1359.CrossRefGoogle Scholar
[18]Schneider, R. and Weil, W.. Zonoids and related topics. In Convexity and its Applications (editors Gruber, P. and Wills, J. M.) (Birkhäuser, 1983). pp. 296317.CrossRefGoogle Scholar
[19]Schneider, R. and Weil, W.. Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129 (1986), 6780.CrossRefGoogle Scholar
[20]Stoyan, D., Kendall, W. S. and Mecke, J.. Stochastic Geometry and its Applications (Akademie-Verlag, 1987).Google Scholar
[21]Waksman, P.. Plane polygons and a conjecture of Blaschke's. Adv. in Appl. Probab. 17 (1985), 774793.CrossRefGoogle Scholar
[22]Weil, W.. Centrally symmetric convex bodies and distributions, II. Israel J. Math. 32 (1979), 173182.CrossRefGoogle Scholar
[23]Weil, W.. Stereology – a survey for geometers. In Convexity and its Applications (editors Gruber, P. and Wills, J. M.) (Birkhäuser, 1983). pp. 360412.CrossRefGoogle Scholar
[24]Weil, W.. Iterations of translative integral formulae and non-isotropic Poisson processes of particles. Math. Z. 205 (1990), 531551.CrossRefGoogle Scholar