Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T02:24:45.626Z Has data issue: false hasContentIssue false

Invariance groups and convergence of types of measures on Lie groups

Published online by Cambridge University Press:  24 October 2008

S. G. Dani
Affiliation:
Sonderforschungsbereich-170, Mathematisches Institut, Bunsenstrasse, 3–5, D-3400 Göttingen, Germany

Extract

Let G be a connected Lie group and let {λi} be a sequence of probability measures on G converging (in the usual weak topology) to a probability measure λ. Suppose that {αi} is a sequence of affine automorphisms of G such that the sequence {αi,(λi)} also converges, say to a probability measure μ. What does this imply about the sequence {αi}? It is a classical observation that if G = ℝn for some n, and neither of λ and μ is supported on a proper affine subspace of ℝn, then under the above condition, {αi} is relatively compact in the group of all affine automorphisms of ℝn.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bialyinicki-Birula, A. and Rosenlicht, M.. Injective morphisms of real algebraic varieties. Proc. Amer. Math. Soc. 13 (1962), 200203.CrossRefGoogle Scholar
[2]Borel, A.. Linear Algebraic Groups (W. A. Benjamin, 1969).Google Scholar
[3]Borel, A. and Tits, J.. Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55150.CrossRefGoogle Scholar
[4]Chevalley, C.. Théorie des Groupes de Lie Groupes Algèbriques; Théorèmes Généraux sur les Algèbres de Lie (Hermann, 1951).Google Scholar
[5]Dani, S. G.. Dense orbits of affine transformations and compactness of groups. J. London Math. Soc. (2) 25 (1981), 241245.Google Scholar
[6]Dani, S. G.. On ergodic quasi-invariant measures of group automorphisms. Israel J. Math. 43, (1982), 6274.CrossRefGoogle Scholar
[7]Dani, S. G.. On atitomorphism groups of connected Lie groups. Manuscr. Math., to appear.Google Scholar
[8]Dani, S. G. and McCrudden, M.. Factors, roots and embeddability of measures on Lie groups. Math. Z. 199 (1988), 369385.CrossRefGoogle Scholar
[9]Dani, S. G. and McCrubden, M.. Embeddability of infinitely divisible distributions on linear Lie groups. Preprint.Google Scholar
[10]Gnedenko, B. V. and Kolmogorov, A. N.. Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, 1954).Google Scholar
[11]Hazod, W.. Über den Typenkonvergenzsatz auf zusammenhängenden Lie gruppen. Monatsh. Math. 110 (1990), 261278.CrossRefGoogle Scholar
[12]Hazon, W. and Nobel, S.. Convergence-of-types theorems for simply connected nilpotent Lie groups. In Probability Measures on Groups IX, Proceedings, Oberwolfach 1988 (editor, Heyer, H.), (Springer-Verlag, 1989), PP. 90106.Google Scholar
[13]Hochschild, G.. The Structure of Lie Groups (Holden-Day, 1965).Google Scholar
[14]Moore, C. C.. Ergodicity of flows on homogeneous spaces. Amer. J. Math. 88 (1966), 154178.CrossRefGoogle Scholar
[15]Parthasarathy, K. R.. Probability Measures on Metric Spaces (Academic Press, 1967).CrossRefGoogle Scholar
[16]Parthasarathy, K. R.. Every completely stable distribution is normal. Sankhyā Ser. A. 35 (1973), 3538.Google Scholar
[17]Prasad, Gopal. Lattices in semisimple groups over local fields. In Studies in Algebra and Number Theory (editor, Rota, G. C.) (Academic Press, 1979), pp. 285356.Google Scholar
[18]Varadarajan, V. S.. Lie Groups, Lie Algebras and their Representations (Prentice Hall, 1974).Google Scholar
[19]Wigner, D.. On the automorphism group of a Lie group. Proc. Amer. Math. Soc. 45 (1974), 140143.CrossRefGoogle Scholar
[20]Wigner, D.. Erratum on ‘On the automorphism group of a Lie group’. Proc. Amer. Math. Soc. 60 (1976), 376.Google Scholar
[21]Zimmer, R. J.. Ergodic Theory and Sencisimple Groups (Birkhauser, 1984).CrossRefGoogle Scholar