Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T04:24:42.151Z Has data issue: false hasContentIssue false

Clustering of filarial infection in an age-graded study: genetic, household and environmental influences

Published online by Cambridge University Press:  03 March 2004

S. WAHYUNI
Affiliation:
Department of Parasitology, Hasanuddin University, Jalan Perintis Kemerdekaan KM 10 Tamalanrea 90245, Makassar, Indonesia Department of Parasitology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
J. J. HOUWING-DUISTERMAAT
Affiliation:
Department of Epidemiology and Biostatistics, Erasmus Medical Center Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
SYAFRUDDIN
Affiliation:
Department of Parasitology, Hasanuddin University, Jalan Perintis Kemerdekaan KM 10 Tamalanrea 90245, Makassar, Indonesia
T. SUPALI
Affiliation:
Department of Parasitology, University of Indonesia, Jalan Salemba Raya 6, 10430 Jakarta, Indonesia
M. YAZDANBAKHSH
Affiliation:
Department of Parasitology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
E. SARTONO
Affiliation:
Department of Parasitology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands

Abstract

A statistical method that analyses correlation structures in families to delineate the contribution of genetic, household and environmental factors on clustering of infection, has been applied to data collected in an area endemic for brugian filariasis in South Sulawesi, Indonesia. Infection was assessed both by microfilaraemia and by anti-filarial IgG4. The results confirmed earlier findings that genetic factors play an important role in clustering of infection. When clustering of infection was analysed in children (<10 years of age) and adults (>20 years of age) separately, it was found that the genetic factors influence clustering of infection in children more profoundly than environmental or household effects. In contrast, genetic factors could not fully explain the clustering of infection seen in adults, which seemed to be mainly determined by household and environmental effects. The data have implications for genotyping studies in brugian filariasis; they indicate that it may be important to concentrate on the younger age groups where individual environmental effects have not yet overruled the genetic influences on gain/loss of infection.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

CHAN, S. H., DISSANAYAKE, S., MAK, J. W., ISMAIL, M. M., WEE, G. B., SRINIVASAN, N., SOO, B. H. & ZAMAN, V. (1984). HLA and filariasis in Sri Lankans and Indians. Southeast Asian Journal of Tropical Medicine and Public Health 15, 281286.Google Scholar
CHOI, E. H., ZIMMERMAN, P. A., FOSTER, C. B., ZHU, S., KUMARASWAMI, V., NUTMAN, T. B. & CHANOCK, S. J. (2001). Genetic polymorphisms in molecules of innate immunity and susceptibility to infection with Wuchereria bancrofti in South India. Genes and Immunity 2, 248253.CrossRefGoogle Scholar
EBERHARD, M. L., HITCH, W. L., McNEELEY, D. F. & LAMMIE, P. J. (1993). Transplacental transmission of Wuchereria bancrofti in Haitian women. Journal of Parasitology 79, 6266.CrossRefGoogle Scholar
GARCIA, A., ABEL, L., COT, M., RICHARD, P., RANQUE, S., FEINGOLD, J., DEMENAIS, F., BOUSSINESQ, M. & CHIPPAUX, J.-P. (1999). Genetic epidemiology of host predisposition microfilaraemia in human loiasis. Tropical Medicine and International Health 8, 565574.CrossRefGoogle Scholar
HAARBRINK, M., TERHELL, A., ABADI, K., VAN BEERS, S., ASRI, M. & YAZDANBAKHSH, M. (1995). IgG4 antibody assay in detection of filariasis. Lancet 346, 853854.CrossRefGoogle Scholar
HOUWING-DUISTERMAAT, J. J., DERKX, B. H. F., ROSENDAAL, F. R. & VAN HOUWELINGEN, H. C. (1995). Testing familial aggregation. Biometrics 51, 12921301.CrossRefGoogle Scholar
HOUWING-DUISTERMAAT, J. J., VAN HOUWELINGEN, H. C. & TERHELL, A. J. (1998). Modelling the cause of dependence with application to filarial infection. Statistics in Medicine 17, 29392954.3.0.CO;2-U>CrossRefGoogle Scholar
KURNIAWAN, A., YAZDANBAKHSH, M., VAN REE, R., AALBERSE, R., SELKIRK, M. E., PARTONO, F. & MAIZELS, R. M. (1993). Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. Journal of Immunology 150, 39413950.Google Scholar
KWAN-LIM, G. E., FORSYTH, K. P. & MAIZELS, R. M. (1990). Filarial-specific IgG4 correlates with active Wuchereria bancrofti infection. Journal of Immunology 145, 42984305.Google Scholar
LAIRD, N. M. & WARE, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963974.CrossRefGoogle Scholar
LAMMIE, P. J., HITCH, W. L., WALKER ALLEN, E. M., HIGHTOWER, W. & EBERHARD, M. L. (1991). Maternal filarial infection as risk factor for infection in children. Lancet 337, 10051006.CrossRefGoogle Scholar
MAHANTY, S., DAY, K. P., ALPERS, M. P. & KAZURA, J. W. (1994). Antifilarial IgG4 antibodies in children from filaria-endemic areas correlated with duration of infection and are dissociated antifilarial IgE antibodies. Journal of Infectious Diseases 170, 13391343.CrossRefGoogle Scholar
MAIZELS, R. M., SARTONO, E., KURNIAWAN, A., PARTONO, F., SELKIRK, M. E. & YAZDANBAKHSH, M. (1995). T cell activation and the balance of antibody isotypes in human lymphatic filariasis. Parasitology Today 11, 5055.CrossRefGoogle Scholar
OTTESEN, E. A., MENDELL, N. R., McQUEEN, J. M., WELLER, P. F., AMOS, D. B. & WARD, F. E. (1981). Familial predisposition to filarial infection-not linked to HLA-A or locus specificities. Acta Tropica 38, 205216.Google Scholar
OTTESEN, E. A., SKVARIL, F., TRIPATHY, S. P., POINDEXTER, R. W. & HUSSAIN, R. (1985). Prominence of IgG4 in the IgG antibody response to human filariasis. Journal of Immunology 134, 27072712.Google Scholar
PARTONO, F., OEMIJATI, S., HUDOJO, J. A., SAJIDIMAN, H., PUTRALI, J., CLARKE, M. D., CARNEY, W. P. & CROSS, J. H. (1977). Malayan filariasis in Central Sulawesi (Celebes), Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health 8, 452458.Google Scholar
SLEE, W. VAN. (1930). Onderzoek naar het voorkomen van filaria te Mamoedjoe. Geneeskundig Tijdschrift van Nederlands-Indië 70, 444450.Google Scholar
SMITH, P. K., KROHN, R. I., HERMANSON, G. T., MALLIA, A. K., GATRNER, F. H., PROVENZANO, M. D., FUJIMOTO, E. K., GOEKE, N. M., OLSOM, B. J. & KLENK, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150, 6785.CrossRefGoogle Scholar
TERHELL, A. J., HOUWING-DUISTERMAAT, J. J., RUITERMAN, Y., HAARBRINK, M., ABADI, K. & YAZDANBAKHSH, M. (2000). Clustering of Brugia malayi infection in a community in South-Sulawesi, Indonesia. Parasitology 120, 2329.CrossRefGoogle Scholar
WALTER, S. D. (1974). On the detection of household aggregation of disease. Biometrics 30, 525538.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION (http://www.filariasis.org/index.pl?iid=2392).
YAZDANBAKHSH, M., SARTONO, E., KRUIZE, Y. C. M., KURNIAWAN, A., PARTONO, F., MAIZELS, R. M., SCHREUDER, G. M. TH, SCHIPPER, R. & DE VRIES, R. R. P. (1995). HLA and elephantiasis in lymphatic filariasis. Human Immunology 44, 5861.CrossRefGoogle Scholar
YAZDANBAKHSH, M., ABADI, K., DE ROO, M., VAN WOUWE, L., DENHAM, D., MEDEIROS, F., VERDUIJN, W., SCHREUDER, G. M. TH, SCHIPPER, R., GIPHART, M. J. & DE VRIES, R. R. P. (1997). HLA and elephantiasis revisited. European Journal of Immunogenetics 24, 439442.CrossRefGoogle Scholar