Hostname: page-component-6b989bf9dc-llglr Total loading time: 0 Render date: 2024-04-14T23:44:42.343Z Has data issue: false hasContentIssue false

Is this conjectural phenotypic dichotomy a plausible outcome of genomic imprinting?

Published online by Cambridge University Press:  26 June 2008

Benjamin James Alexander Dickins
Affiliation:
505 Wartik Laboratory, Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA 16802
David William Dickins
Affiliation:
School of Psychology, University of Liverpool, ERB, Liverpool L69 7ZA, United Kingdom
Thomas Edmund Dickins
Affiliation:
School of Psychology, University of East London, London E15 4LZ, United Kingdom, and Centre for Philosophy of Natural and Social Science, The London School of Economics, London WC2A 2AE, United Kingdom. ben@bx.psu.eduhttp://www.bendickins.net/dickins@liverpool.ac.ukhttp://www.liv.ac.uk/psychology/staff/ddickins.htmlt.dickins@uel.ac.ukhttp://www.uel.ac.uk/psychology/staff/tomdickins.htm

Abstract

What is the status of the dichotomy proposed and the nosological validity of the contrasting pathologies described in the target article? How plausibly can dysregulated imprinting explain the array of features described, compared with other genetic models? We believe that considering alternative models is more likely to lead in the long term to the correct classification and explanation of the component behaviours.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, N. D., Logan, K., Lally, G., Drage, D. J., Norris, M. L. & Keverne, E. B. (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proceedings of the National Academy of Sciences USA 92:10782–86.CrossRefGoogle ScholarPubMed
Bentall, R. P. (2003a) Madness explained: Psychosis and human nature. Allen Lane.Google Scholar
Bittel, D. C. & Butler, M. G. (2005) Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Reviews in Molecular Medicine 7:120.CrossRefGoogle ScholarPubMed
Brown, W. M. & Consedine, N. S. (2004) Just how happy is the happy puppet? An emotion signaling and kinship theory perspective on the behavioral phenotype of children with Angelman syndrome. Medical Hypotheses 63(3):377–85.CrossRefGoogle ScholarPubMed
Davies, W., Isles, A. R. & Wilkinson, L. S. (2005) Imprinted gene expression in the brain. Neuroscience and Biobehavioral Reviews 29:421–30.CrossRefGoogle ScholarPubMed
Day, T. & Bonduriansky, R. (2004) Intralocus sexual conflict can drive the evolution of genomic imprinting. Genetics 167:1537–46.CrossRefGoogle ScholarPubMed
Haig, D. & Westoby, M. (1989) Parent specific gene expression and the triploid endosperm. American Naturalist 134:147–55.CrossRefGoogle Scholar
Happé, F., Ronald, A. & Plomin, R. (2006) Time to give up on a single explanation for autism. Nature Neuroscience 9(10):1218–20.CrossRefGoogle ScholarPubMed
Keverne, E. B., Fundele, R., Narasimha, M., Barton, S. C. & Surani, M. A. (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Research, Developmental Brain Research 92:91100.CrossRefGoogle ScholarPubMed
Lalande, M. & Calciano, M. A. (2007) Molecular epigenetics of Angelman syndrome. Cellular and Molecular Life Sciences 64:947–60.CrossRefGoogle ScholarPubMed
Miller, G. F. (2001) Aesthetic fitness: How sexual selection shaped artistic virtuosity as a fitness indicator and aesthetic preferences as mate choice criteria. Bulletin of Psychology and the Arts 2:2025.Google Scholar
Moore, T. & Haig, D. (1991) Genomic imprinting in mammalian development: A parental tug-of-war. Trends in Genetics 7:4549.CrossRefGoogle ScholarPubMed
Nettle, D. & Clegg, H. (2006) Schizotypy, creativity and mating success in humans. Proceedings of the Royal Society of London Series B, Biological Sciences 273:611–15.Google ScholarPubMed
Ronald, A., Happé, F., Bolton, P., Butcher, L. M., Price, T. S., Wheelwright, S., Baron-Cohen, S. & Plomin, R. (2006) Genetic heterogeneity between the three components of the autism spectrum: A twin study. Journal of the American Academy of Child and Adolescent Psychiatry 45(6):691–99.CrossRefGoogle ScholarPubMed
Temple, I. K. & Shield, J. P. H. (2002) Transient neonatal diabetes, a disorder of imprinting. Journal of Medical Genetics 39:872–75.CrossRefGoogle ScholarPubMed
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M. & Meaney, M. J. (2004) Epigenetic programming by maternal behavior. Nature Neuroscience 7:847–54.CrossRefGoogle ScholarPubMed