Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-19T04:59:34.627Z Has data issue: false hasContentIssue false

Etale homotopy and sums-of-squares formulas

Published online by Cambridge University Press:  01 July 2008

DANIEL DUGGER
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR 97403, U.S.A. e-mail: ddugger@math.uoregon.edu
DANIEL C. ISAKSEN
Affiliation:
Department of Mathematics, University of Oregon, Eugene, OR 97403, U.S.A. e-mail: ddugger@math.uoregon.edu

Abstract

This paper uses a relative of BP-cohomology to prove a theorem in characteristic p algebra. Specifically, we obtain some new necessary conditions for the existence of sums-of-squares formulas over fields of characteristic p>2. These conditions were previously known in characteristic zero by results of Davis. Our proof uses a generalized étale cohomology theory called étale BP2.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adams, J. F.. Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics (University Chicago Press, 1974).Google Scholar
[2]Angeltveit, V.. A obstruction theory and the strict associativity of E/I. preprint (2005).Google Scholar
[3]Artin, M., Grothendieck, A. and Verdier, J. L.. Théorie des Topos et Cohomologie Étale des Schémas. Séminaire de Géométrie Algébrique du Bois-Marie, 1963–1964 (SGA 4). Lecture Notes in Mathematics vol. 269, 270 and 305 (Springer, 1972).Google Scholar
[4]Artin, M. and Mazur, B.. Etale Homotopy. Lecture Notes in Mathematics, vol. 100 (Springer, 1969).Google Scholar
[5]Astey, L.. Geometric dimension of bundles over real projective spaces. Quart. J. Math. Oxford (2) 31 (1980), 139155.Google Scholar
[6]Atiyah, M. F.. Immersions and embeddings of manifolds. Topology 1 (1962), 125132.Google Scholar
[7]Atiyah, M. F. and Hirzebruch, F.. Vector bundles and homogeneous spaces In 1961 Proc. Sympos. Pure Math. vol. III (Amer. Math. Soc., 1961), pp. 738.Google Scholar
[8]Baas, N. A.. On bordism theory of manifolds with singularities. Math. Scand. 33 (1973), 279302.Google Scholar
[9]Bruner, R. R., Davis, D. M. and Mahowald, M.. Nonimmersions of real projective spaces implied by tmf. In Recent progress in homotopy theory. Contemp. Math. 293 (Amer. Math. Soc. 2002), pp. 4568.Google Scholar
[10]Davis, D. M.. Generalized homology and the generalized vector field problem. Quart. J. Math. Oxford 25 (1974), 169193.Google Scholar
[11]Davis, D. M.. A strong nonimmersion theorem for real projective spaces. Ann. Math. 120 (1984), 517528.Google Scholar
[12]Dugger, D. and Isaksen, D. C.. The Hopf condition for bilinear forms over arbitrary fields. Ann. Math. 165 (2007), 943964.Google Scholar
[13]Dugger, D. and Isaksen, D. C.. Algebraic K-theory and sums-of-squares formulas. Doc. Math. 10 (2005), 357366.Google Scholar
[14]Elmendorf, A. D., Kriz, I., Mandell, M. A. and May, J. P.. Rings, modules, and algebras in stable homotopy theory. {W}ith an appendix by M. Cole. Math. Surveys Monogr. 47 (Amer. Math. Soc., 1997).Google Scholar
[15]Friedlander, E. M.. Etale homotopy of simplicial schemes. Ann. of Math. Stud. 104 (Princeton University Press, 1982).Google Scholar
[16]Goerss, P. G.. Associative MU-algebras. preprint.Google Scholar
[17]Gonzalez, J.. unpublished letter to Don Davis.Google Scholar
[18]Hirschhorn, P. S.. Model categories and their localizations. Math. Surveys Monogr. 99 (Amer. Math. Soc., 2003).Google Scholar
[19]Hopf, H.. Ein topologishcer Beitrag zur reelen Algebra. Comment. Math. Helv. 13 (1940/41), 219239.Google Scholar
[20]Hovey, M.. Model categories. Math. Surveys Monogr. 63 (Amer. Math. Soc., 1999).Google Scholar
[21]Hovey, M., Shipley, B. and Smith, J.. Symmetric spectra. J. Amer. Math. Soc. 13 (2000), 149208.Google Scholar
[22]Hurwitz, A.. Über die Komposition der quadratischen Formen von beliebig vielen Variabeln. Nach. V. der. Ges. der Wiss. Gottingen, Math. Phys. kl. (1898), 309–316. Reprinted in Math. Werke Band 2 (Birkhäuser, 1963), pp. 565–571.Google Scholar
[23]Hurwitz, A.. Über die Komposition der qudratischen Formen. Math. Ann. 88 (1923) 125. Reprinted in Math. Werke Band 2 (Birkhäuser, 1963), pp. 641–666.Google Scholar
[24]Isaksen, D. C.. A model structure on the category of pro-simplicial sets. Trans. Amer. Math. Soc. 353 (2001), 28052841.Google Scholar
[25]Isaksen, D. C.. Ètale realization on the -homotopy theory of schemes. Adv. Math. 184 (2004), 3763.Google Scholar
[26]Isaksen, D. C.. Completions of pro-spaces. Math. Z. 250 (2005), 113143.Google Scholar
[27]Jannsen, U.. Mixed Motives and Algebraic K-Theory. Lecture Notes in Mathematics vol. 1400 (Springer, 1990).Google Scholar
[28]Lam, K. Y.. Topological methods for studying the composition of quadratic forms. In Quadratic and Hermitian Forms. Canadian Mathematical Society Conference Proceedings vol. 4 (Amer. Math. Soc., 1984), pp. 173–192.Google Scholar
[29]Landweber, P. S.. Fixed point free conjugations on complex manifolds. Ann. Math. (2) 86 (1967), 491502.Google Scholar
[30]Milne, J.. Étale Cohomology. Princeton Mathematical Series vol. 33 (Princeton University Press, 1980).Google Scholar
[31]Morel, F.. Ensembles profinis simpliciaux et interprétation géométrique du foncteur T. Bull. Soc. Math. France 124 (1996), 347373.Google Scholar
[32]Morel, F. and Voevodsky, V.. -homotopy theory. Inst. Hautes Études Sci. Publ. Math. 90 (2001), 45143.Google Scholar
[33]Oka, S.. Multiplications on the Moore spectrum. Mem. Fac. Sci. Kyushu Univ. Ser. A 38 (1984), 257276.Google Scholar
[34]Quick, G.. Stable etale realization and etale cobordism. arXiv:math.AG/0608313. preprint (2006).Google Scholar
[35]Quillen, D. G... Homotopical Algebra. Lecture Notes in Mathematics vol. 43 (Springer, 1967).Google Scholar
[36]Radon, J.. Lineare scharen orthogonaler matrizen. Abh. Math. Sem. Univ. Hamburg 1 (1922) 114. Reprinted in Collected Works vol. 1 (Birkhäuser, 1987), pp. 307–320.Google Scholar
[37]Serre, J. P.. Local fields. Graduate Texts in Math. vol. 67 (Springer-Verlag, 1979).Google Scholar
[38]Shapiro, D. B.. Products of sums of squares. Expo. Math. 2 (1984), 235261.Google Scholar
[39]Shapiro, D. B. and Szyjewski, M.. Product formulas for quadratic forms. Bol. Soc. Mat. Mexicana 37 (1992), 463474.Google Scholar
[40]Stiefel, E.. Über Richtungsfelder in den projektiven Räumen und einen Satz aus der reelen Algebra. Comment. Math. Helv. 13 (1940/41), 201218.Google Scholar