Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T03:37:51.048Z Has data issue: false hasContentIssue false

Can Very Massive Stars Avoid Pair-Instability Supernovae?

Published online by Cambridge University Press:  01 December 2007

Sylvia Ekström
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51 - CH 1290 Sauverny, Switzerland email: sylvia.ekstrom@obs.unige.ch, georges.meynet@obs.unige.ch, andre.maeder@obs.unige.ch
Georges Meynet
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51 - CH 1290 Sauverny, Switzerland email: sylvia.ekstrom@obs.unige.ch, georges.meynet@obs.unige.ch, andre.maeder@obs.unige.ch
André Maeder
Affiliation:
Geneva Observatory, University of Geneva, Maillettes 51 - CH 1290 Sauverny, Switzerland email: sylvia.ekstrom@obs.unige.ch, georges.meynet@obs.unige.ch, andre.maeder@obs.unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Very massive primordial stars (140 M < M < 260 M) are supposed to end their lives as PISN. Such an event can be traced by a typical chemical signature in low metallicity stars, but at the present time, this signature is lacking in the extremely metal-poor stars we are able to observe. Does it mean that those very massive objects were not formed, contrarily to the primordial star formation scenarios ? Could it be possible that they avoided this tragic fate ?

We explore the effects of rotation, anisotropical mass loss and magnetic field on the core size of very massive Population III models. We find that magnetic fields provide the strong coupling that is lacking in standard evolution metal-free models and our 150 M Population III model avoids indeed the pair-instability explosion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science 295, 93CrossRefGoogle Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ 564, 23CrossRefGoogle Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008, A&A 478, 467Google Scholar
Eldridge, J. J. & Vink, J. S. 2006, A&A 452, 295Google Scholar
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ 623, 585CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., et al. 2003, ApJ 591, 288CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ 567, 532CrossRefGoogle Scholar
Hirschi, R. 2007, A&A 461, 571Google Scholar
Kudritzki, R. P. 2002, ApJ 577, 389CrossRefGoogle Scholar
Maeder, A. 1999, A&A 347, 185Google Scholar
Maeder, A. 2002, A&A 392, 575Google Scholar
Maeder, A. & Meynet, G. 2000, A&A 361, 159Google Scholar
Maeder, A. & Meynet, G. 2005, A&A 440, 1041Google Scholar
Marigo, P., Chiosi, C., & Kudritzki, R.-P. 2003, A&A 399, 617Google Scholar
Meynet, G., Ekström, S., & Maeder, A. 2006, A&A 447, 623Google Scholar
Nakamura, F. & Umemura, M. 2001, ApJ 548, 19CrossRefGoogle Scholar
Nugis, T. & Lamers, H. J. G. L. M. 2000, A&A 360, 227Google Scholar
O'Shea, B. W. & Norman, M. L. 2007, ApJ 654, 66CrossRefGoogle Scholar
Spruit, H. C. 2002, A&A 381, 923Google Scholar
Tumlinson, J., Venkatesan, A., & Shull, J. M. 2004, ApJ 612, 602CrossRefGoogle Scholar
Vink, J. S. & de Koter, A. 2005, A&A 442, 587Google Scholar
Yoshida, N., Omukai, K., Hernquist, L., & Abel, T. 2006, ApJ 652, 6CrossRefGoogle Scholar