Antarctic Science

Surface “waves” on Byrd Glacier, Antarctica

D. REUSCH a1 and T. HUGHES a2
a1 Department of Natural Sciences, 173 High Street, University of Maine at Farmington, Farmington, ME 04938, USA
a2 Department of Earth Sciences, Climate Change Institute, University of Maine, Orono, ME 04473, USA

Article author query
reusch d   [PubMed][Google Scholar] 
hughes t   [PubMed][Google Scholar] 


Byrd Glacier has one of the largest ice catchment areas in Antarctica, delivers more ice to the Ross Ice Shelf than any other ice stream, and is the fastest of these ice streams. A force balance, combined with a mass balance, demonstrates that stream flow in Byrd Glacier is transitional from sheet flow in East Antarctica to shelf flow in the Ross Ice Shelf. The longitudinal pulling stress, calculated along an ice flowband from the force balance, is linked to variations of ice thickness, to the ratio of the basal water pressure to the ice overburden pressure where Byrd Glacier is grounded, and is reduced by an ice-shelf buttressing stress where Byrd Glacier is floating. Longitudinal tension peaks at pressure-ratio maxima in grounded ice and close to minima in the ratio of the pulling stress to the buttressing stress in floating ice. The longitudinal spacing of these tension peaks is rather uniform and, for grounded ice, the peaks occur at maxima in surface slope that have no clear relation to the bed slope. This implies that the maxima in surface slope constitute a “wave train” that is related to regular variations in ice-bed coupling, not primarily to bed topography. It is unclear whether these surface “waves” are “standing waves” or are migrating either upslope or downslope, possibly causing the grounding line to either retreat or advance. Deciding which is the case will require obtaining bed topography in the map plane, a new map of surface topography, and more sophisticated modeling that includes ice flow linked to subglacial hydrology in the map plane.

(Received January 17 2003)
(Accepted August 5 2003)

Key Words: East Antarctica; ice stream; outlet glacier; Ross embayment; unstable ice flow.