Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T02:40:14.663Z Has data issue: false hasContentIssue false

Flash-lag: Prediction or emergent property of directional selectivity mechanisms?

Published online by Cambridge University Press:  14 May 2008

Julia Berzhanskaya
Affiliation:
Allen Institute for Brain Science, Seattle, WA 98103. juliab@alleninstitute.org

Abstract

3D FORMOTION, a unified cortical model of motion integration and segmentation, explains how brain mechanisms of form and motion processing interact to generate coherent percepts of object motion from spatially distributed and ambiguous visual information. The same cortical circuits reproduce motion-induced distortion of position maps, including both flash-lag and flash-drag effects.

Type
Open Peer Commentary
Copyright
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alais, D. & Burr, D. (2003) The “flash-lag” effect occurs in audition and cross-modally. Current Biology 13(1):5963.Google Scholar
Anderson, B. L. & Barth, H. C. (1999) Motion-based mechanisms of illusory contour synthesis. Neuron 24:433–41.Google Scholar
Anstis, S. (2007) The flash-lag effect during illusory chopstick rotation. Perception 36:1043–48.Google Scholar
Berzhanskaya, J., Grossberg, S. & Mingolla, E. (2004) Motion-to-form cortical projections and distortion of the position maps. Paper presented at the Vision Sciences Society Conference, Sarasota, FL, May 1–5, 2004, p. 149.Google Scholar
Berzhanskaya, J., Grossberg, S. & Mingolla, E. (2007) Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception. Spatial Vision 20(4):337–95.Google Scholar
Cai, R. & Schlag, J. (2001) A new form of illusory conjunction between color and shape. Journal of Vision 1(3):127, 127a.Google Scholar
De Valois, R. L., & De Valois, K. K. (1991) Vernier acuity with stationary moving Gabors. Vision Research 31(9):1619–26.Google Scholar
Fu, Y. X., Shen, Y., Gao, H. & Dan, Y. (2004) Asymmetry in visual cortical circuits underlying motion-induced perceptual mislocalization, Journal of Neuroscience 24:2165–71.Google Scholar
Grossberg, S. & Mingolla, E. (1985) Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review 92(2):173211.Google Scholar
Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. W. & Ferster, D. (1997) Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. Journal of Neurophysiology 78(5):2772–89.Google Scholar
Livingstone, M. S. (1998) Mechanisms of direction selectivity in macaque V1. Neuron 20:509–26.Google Scholar
McGraw, P. V., Walsh, V. & Barrett, B. T. (2004) Motion-sensitive neurones in V5/MT modulate perceived spatial position. Current Biology 14(12):10901093.Google Scholar
Nijhawan, R. (1994) Motion extrapolation in catching. Nature 370(6487):256–57.Google Scholar
Ramachandran, V. S. & Anstis, S. M. (1990) Illusory displacement of equiluminous kinetic edges. Perception 19(5):611–16.Google Scholar
Reichardt, W. (1961) Autocorrelation, A principle for the evaluation of sensory information by the central nervous system. In: Sensory communication, ed. Rosenblith, W. A., pp. 303–17. Wiley.Google Scholar
Sheth, B. R., Nijhawan, R. & Shimojo, S. (2000) Changing objects lead briefly flashed ones. Nature Neuroscience 3(5):489–95.Google Scholar
Sundberg, K. A., Fallah, M. & Reynolds, J. H. (2006) A motion-dependent distortion of retinotopy in area V4. Neuron 49(3):447–57.Google Scholar
van Santen, J. P., & Sperling, G. (1985) Elaborated Reichardt detectors. Journal of the Optical Society of America 2:300–21.Google Scholar
Weiss, Y. & Adelson, E. H. (2000) Adventures with gelatinous ellipses – constraints on models of human motion analysis. Perception 29:543–66.Google Scholar
Whitney, D. & Cavanagh, P. (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience 3:954–59.Google Scholar
Whitney, D., Goltz, H. C., Thomas, C. G., Gati, J. S., Menon, R. S. & Goodale, M. A. (2003) Flexible retinotopy: Motion-dependent position coding in the visual cortex. Science 302(5646):878–81.Google Scholar