Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T23:17:49.170Z Has data issue: false hasContentIssue false

In Situ Transmission Electron Microscopy Observation of the Growth of Bismuth Oxide Whiskers

Published online by Cambridge University Press:  03 March 2008

T. Mima
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Y. Takeuchi
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
S. Arai
Affiliation:
High-Voltage Electron Microscope Laboratory, Eco-Topia Science Institute, Nagoya University, Nagoya 464-8603, Japan
K. Kishita
Affiliation:
Material Analysis Department, Toyota Motor Corporation, Toyota 471-8542, Japan
K. Kuroda
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
H. Saka*
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
*
Corresponding author. E-mail: saka@nagoya-u.jp
Get access

Abstract

Growth of bismuth oxide (most probably Bi2O3) was observed in situ in a transmission electron microscope. Bi liquid particles were dispersed on the substrates of diamond or SiO2. Introduction of oxygen up to ∼5 × 10−4 Pa resulted in formation of bismuth oxide (most probably Bi2O3) whiskers. The growth mechanism of the whisker was discussed in terms of a vapor-liquid-solid (VLS) mechanism. It is suggested that the liquid droplet of Bi acts as a physical catalyst for growth of bismuth oxide (most probably Bi2O3) whiskers.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cao, L., Garipcan, B., Atchison, J.S., Ni, C., Nabet, B. & Spanier, J.E. (2006). Instability and transport of metal catalyst in the growth of tapered silicon nanowires. Nano Lett 6, 18521857.CrossRefGoogle ScholarPubMed
Gattow, G. & Schröder, H. (1964). Über ein Wismut(III)-oxid mit höheren Sauersoffgehalt (β-Modifikation). Z Anorg All Chem 328, 4468.CrossRefGoogle Scholar
Hannon, J.B., Kodambaka, S., Ross, F.M. & Tromp, R.M. (2006). The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 6971.CrossRefGoogle Scholar
Harwig, H.A. (1978). On the structures of bismuthsesquioxide: The α, β, γ and δ-phase. Z Anorg All Chem 444, 151166.CrossRefGoogle Scholar
Hashimoto, H., Kumao, A., Eto, T. & Fujiwara, K. (1970). Drops of oxides on tungsten oxide needles and nuclei of dendritic crystals. J Cryst Growth 7, 113116.CrossRefGoogle Scholar
Hashimoto, H., Naiki, T., Eto, T. & Fujiwara, K. (1968). High temperature gas reaction specimen chamber for an electron microscope. Jpn J Appl Phys 7, 946952.CrossRefGoogle Scholar
Kamino, T., Yaguchi, T., Konno, M., Watabe, A., Marukawa, T., Mima, T., Kuroda, K., Saka, H., Arai, S., Makino, H., Suzuki, Y. & Kishita, K. (2005). Development of a gas injection/specimen heating holder for use with transmission electron microscope. J Electron Microsc 54, 497503.CrossRefGoogle ScholarPubMed
Roth, R., Dennis, J.R. & McMurdie, H.F. (Eds.) (1987). Phase Diagrams for Ceramists, Vol. VI, Fig. 6299, p. 41. Westerville, OH: The American Ceramic Society.Google Scholar
Sasaki, K. & Saka, H. (1997). In-situ high resolution transmission electron microscopy of solid-liquid interface of alumina. MRS Symp Proc 466, 185190.CrossRefGoogle Scholar
Smithells, C.J. (Ed.) (1976). Metals Reference Book, 5th ed.London and Boston: Butterworths.Google Scholar
Wagner, R.S. & Ellis, W.C. (1964). Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 5, 8990.CrossRefGoogle Scholar
Yang, B., Mo, M., Hu, H., Li, C., Yang, X., Li, Q. & Qian, Y. (2004). A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur J Inorg Chem 2004, 17851787.CrossRefGoogle Scholar