Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T04:06:26.904Z Has data issue: false hasContentIssue false

Habitable zones for Earth-mass planets in multiple planetary systems

Published online by Cambridge University Press:  01 October 2007

Jianghui JI
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China email: jijh@pmo.ac.cn
Lin LIU
Affiliation:
Department of Astronomy, Nanjing University, Nanjing 210093, China email: xhliao@nju.edu.cn
Hiroshi KINOSHITA
Affiliation:
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan
Guangyu LI
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China email: jijh@pmo.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We perform numerical simulations to study the Habitable zones (HZs) and dynamical structure for Earth-mass planets in multiple planetary systems. For example, in the HD 69830 system, we extensively explore the planetary configuration of three Neptune-mass companions with one massive terrestrial planet residing in 0.07 AU ≤ a ≤ 1.20 AU, to examine the asteroid structure in this system. We underline that there are stable zones of at least 105 yr for low-mass terrestrial planets locating between 0.3 and 0.5 AU, and 0.8 and 1.2 AU with final eccentricities of e < 0.20. Moreover, we also find that the accumulation or depletion of the asteroid belt are also shaped by orbital resonances of the outer planets, for example, the asteroidal gaps at 2:1 and 3:2 mean motion resonances (MMRs) with Planet C, and 5:2 and 1:2 MMRs with Planet D. In a dynamical sense, the proper candidate regions for the existence of the potential terrestrial planets or HZs are 0.35 AU < a < 0.50 AU, and 0.80 AU < a < 1.00 AU for relatively low eccentricities, which makes sense to have the possible asteroidal structure in this system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Alibert, Y., et al. 2006, A&A, 455, L25Google Scholar
Asghari, N., et al. 2004, A&A, 426, 353Google Scholar
Beichman, C. A., et al. 2005, ApJ, 626, 1061CrossRefGoogle Scholar
Beichman, C. A., et al. 2006, ApJ, 652, 1674CrossRefGoogle Scholar
Boss, A. P. 2006, ApJ, 644, L79CrossRefGoogle Scholar
Butler, R. P., et al. 2006, ApJ, 646, 505CrossRefGoogle Scholar
Dvorak, R. 2008, IAU S249, this issueGoogle Scholar
Ford, E. B., &, Gaudi, B. S., 2006, ApJ, 652, L137CrossRefGoogle Scholar
Gaidos, E., et al. 2007, Science, 318, 210CrossRefGoogle Scholar
Gozdziewski, K., & Konacki, M. 2006, ApJ, 647, 573CrossRefGoogle Scholar
Gozdziewski, K, et al. 2007, ApJ, 657, 546CrossRefGoogle Scholar
Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388CrossRefGoogle Scholar
Ji, J., Liu, L., Kinoshita, H., & Li, G.Y. 2005, ApJ, 631, 1191CrossRefGoogle Scholar
Ji, J., Kinoshita, H., Liu, L., & Li, G.Y. 2007, ApJ, 657, 1092CrossRefGoogle Scholar
Jones, B. W., Underwood, D. R., & Sleep, P. N. 2005, ApJ, 622, 1091CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108CrossRefGoogle Scholar
Lovis, C., et al. 2006, Nature, 441, 305 (Paper I)CrossRefGoogle Scholar
McArthur, B.E., et al. 2004, ApJ, 614, L81CrossRefGoogle Scholar
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (New York: Cambridge Univ. Press)Google Scholar
Psychoyos, D., &, Hadjidemetriou, J. D. 2008, IAU S249, this issueGoogle Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. 2006, Science, 313, 1413CrossRefGoogle Scholar
Rivera, E. J., et al. 2005, ApJ, 634, 625CrossRefGoogle Scholar
Santos, N.C., et al. 2004, A&A, 426, L19Google Scholar
von Bloh, W., Bounama, C., Cuntz, M., & Franck, S. 2007, arXiv:0705.3758Google Scholar