Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T10:53:15.391Z Has data issue: false hasContentIssue false

Tidal evolution of close-in extra-solar planets

Published online by Cambridge University Press:  01 October 2007

Brian Jackson
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd Tucson, Arizona 85721-0092USA email: bjackson@lpl.arizona.edu
Richard Greenberg
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd Tucson, Arizona 85721-0092USA email: bjackson@lpl.arizona.edu
Rory Barnes
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, 1629 E University Blvd Tucson, Arizona 85721-0092USA email: bjackson@lpl.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of eccentricities e of extra-solar planets with semi-major axes a > 0.2 AU is very uniform, and values for e are generally large. For a < 0.2 AU, eccentricities are much smaller (most e < 0.2), a characteristic widely attributed to damping by tides after the planets formed and the protoplanetary gas disk dissipated. We have integrated the classical coupled tidal evolution equations for e and a backward in time over the estimated age of each planet, and confirmed that the distribution of initial e values of close-in planets matches that of the general population for reasonable tidal dissipation values Q, with the best fits for stellar and planetary Q being ∼ 105.5 and ∼ 106.5, respectively. The current small values of a were only reached gradually due to tides over the lifetimes of the planets, i.e., the earlier gas disk migration did not bring all planets to their current orbits. As the orbits tidally evolved, there was substantial tidal heating within the planets. The past tidal heating of each planet may have contributed significantly to the thermal budget that governed the planet's physical properties, including its radius, which in many cases may be measured by observing transit events. Here we also compute the plausible heating histories for a few planets with anomalously large measured radii, including HD 209458 b. We show that they may have undergone substantial tidal heating during the past billion years, perhaps enough to explain their large radii. Theoretical models of exoplanet interiors and the corresponding radii should include the role of large and time-variable tidal heating. Our results may have important implications for planet formation models, physical models of “hot Jupiters”, and the success of transit surveys.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bakos, P., et al. 2007a, ApJ, 656, 552.CrossRefGoogle Scholar
Bakos, P., et al. 2007b, ApJ, 670, 826.CrossRefGoogle Scholar
Barnes, 2001, ApJ, 561, 1095.CrossRefGoogle Scholar
Barnes, R. & Greenberg, R. 2007, ApJL, 659, L53.CrossRefGoogle Scholar
Barnes, J. 2007, PASP, 119, 986.CrossRefGoogle Scholar
Bodenheimer, P., Laughlin, G., & Lin, D.N.C 2003, ApJ, 592, 555.CrossRefGoogle Scholar
Borucki, W. J. & Summers, A. L. 1984, Icarus, 58, 121.CrossRefGoogle Scholar
Bramich, D. M. et al. 2005, Mon. Not. R. Astron. Soc., 359, 1096.CrossRefGoogle Scholar
Butler, R. P. et al. 2006, ApJ, 646, 505.CrossRefGoogle Scholar
Burke, C. J. et al. 2006, ApJ, 132, 210.CrossRefGoogle Scholar
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 514.CrossRefGoogle Scholar
Da Silva, R. et al. 2006, A&A, 446, 717.Google Scholar
Deming, D. et al. 2007, ApJL, 667, L199.CrossRefGoogle Scholar
Fischer, D. & Valenti, J. 2005, ApJ, 622, 1102.CrossRefGoogle Scholar
Ford, E. & Rasio, F. 2006, ApJ, 638, L45.CrossRefGoogle Scholar
Gillon, M. et al. 2007, A&A, 472, L13.Google Scholar
Goldreich, P. & Nicholson, P. 1981, Icarus, 30, 301.CrossRefGoogle Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375.CrossRefGoogle Scholar
Gorda, S. & Svechnikov, M. A. 1996, Astron. Reports, 42, 793.Google Scholar
Guillot, T. 2005, Ann. Rev. Earth and Planet. Sci., 33, 493.CrossRefGoogle Scholar
Hubbard, W. B. 1984, Planetary Interiors, (New York: Van Nostrand Reinhold Co).Google Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008a ApJ, acceptedGoogle Scholar
Jackson, B., Greenberg, R., & Barnes, R. 2008b, ApJ, submitted.Google Scholar
Johnson, J. A. et al. 2006, ApJ, 652, 1724.CrossRefGoogle Scholar
Kaula, W. 1968, An Introduction to Planetary Physics, Wiley, NY.Google Scholar
Knutson, H., Charbonneau, D., Noyes, R., Brown, T., & Gilliland, R. 2007, ApJ, 655, 564.CrossRefGoogle Scholar
Laughlin, G. et al. 2005, ApJL, 629, L121.CrossRefGoogle Scholar
Lin, D. N. C. et al. 1996, Nature, 380, 606.CrossRefGoogle Scholar
Lovis, C. et al. 2006, Nature, 441, 305.CrossRefGoogle Scholar
Maness, H. L. et al. 2007, PASP, 119, 90.CrossRefGoogle Scholar
Mardling, R. 2007, Mon. Not. R. Astron. Soc., in press.Google Scholar
Weidenschilling, S. J. & Marzari, F. 1996, Nature, 384, 619.CrossRefGoogle Scholar
Mathieu, R. 1994, Annu. Rev. Astron. Astrophys., 32, 465.CrossRefGoogle Scholar
Mayor, M. et al. 2004, A&A, 415, 391.Google Scholar
McArthur, B. et al. 2004, ApJL, 614, L81.CrossRefGoogle Scholar
Moutou, C. et al. 2006, A&A, 458, 327.Google Scholar
Ogilvie, G. & Lin, D. N. C. 2004, ApJ, 610, 477.CrossRefGoogle Scholar
Peale, S. J., Cassen, P. & Reynolds, R. T. 1979, Science, 203, 892.CrossRefGoogle Scholar
Pepper, J. & Gaudi, B. S. 2006, Acta Astronomica, 56, 183.Google Scholar
Rasio, F. A. & Ford, E. B. 1996, Science, 279, 954.CrossRefGoogle Scholar
Rasio, F. A., Tout, C. A., Lubow, S. H., & Livio, M. 1996, ApJ, 470, 1187.CrossRefGoogle Scholar
Rivera, E. et al. 2005, ApJ, 634, 625.CrossRefGoogle Scholar
Saffè, C. et al. 2006, A&A, 443, 609.Google Scholar
Takeda, G. et al. 2007, ApJS, 168, 297.CrossRefGoogle Scholar
Trilling, D. 2000, ApJL, 537, L61.CrossRefGoogle Scholar
Udry, S. et al. 2002, ApJ, 634, 625.Google Scholar
Valenti, J. & Fischer, D. 2005, ApJ, 159, 141.Google Scholar
Vogt, S. et al. 2005, ApJ, 632, 638.CrossRefGoogle Scholar
von Braun, K. et al. 2005, PASP, 117, 141.CrossRefGoogle Scholar
Wright, J. T. et al. 2007, ApJ, 657, 533.CrossRefGoogle Scholar
Yoder, C. & Peale, S. 1981, Icarus, 47, 1.CrossRefGoogle Scholar
Zucker, S. et al. 2004, A&A, 426, 695.Google Scholar