Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T04:15:07.970Z Has data issue: false hasContentIssue false

Projected environmental shifts under climate change: European trends and regional impacts

Published online by Cambridge University Press:  03 April 2008

M.J. METZGER*
Affiliation:
Wageningen University, Plant Production Systems Group, PO Box 430, 6700 AK Wageningen, the Netherlands Wageningen University, Environmental Systems Analysis Group, PO Box 47, 6700 AA Wageningen, the Netherlands Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, the Netherlands
R.G.H. BUNCE
Affiliation:
Alterra, Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen, the Netherlands
R. LEEMANS
Affiliation:
Wageningen University, Environmental Systems Analysis Group, PO Box 47, 6700 AA Wageningen, the Netherlands
D. VINER
Affiliation:
Natural England, 122a Thorpe Road, Norwich NR1 1RN, UK
*
*Correspondence: Dr Marc J. Metzger, School of GeoSciences, Drummand Street, University of Edinburgh, Edinburgh EH8 9XP, UK Tel: +44 131 651 4446 Fax: +44 131 650 2524 e-mail: marc.metzger@ed.ac.uk

Summary

Potential impacts of climate change on ecosystems and the environment are generally assessed by summarizing climate change scenarios for broad regions (for example countries), or by specific modelling exercises. This paper presents an alternative approach for summarizing climate change impacts on the European environment, by linking climate change scenarios to recognized environmental divisions. Sixteen climate scenarios from four general circulation models were therefore linked to 84 statistically derived strata sharing common environmental features. In this way, the future distribution of the strata, as defined by their climate characteristics, were quantified and mapped. The results show that Europe is likely to experience major environmental shifts, with pronounced regional variations. As expected, environmental strata shift northwards. In particular the southern Mediterranean strata are projected to expand, whereas Atlantic environments remain much more stable. Alpine and Mediterranean mountain environments decline dramatically. However, the Scandinavian zones show no consistent pattern of change. More detailed analysis of four sample regions shows that the impacts of the projected shifts will largely depend on regional characteristics. Environmental conservation, regional assessments and scenario development could therefore be facilitated by combining relevant regional datasets (for example for vegetation, land cover and species distribution) with the shifting environmental strata.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohn, U., Gollub, G. & Hettwer, C. (2000) Karte der natürlichen Vegetation Europas: Maßstab 1:2.500.000. Bon-Bad Godesberg, Germany: Bundesamt für Naturschutz.Google Scholar
Bunce, R.G.H., Barr, C.J., Clarke, R.T., Howard, D.C. & Lane, A.M.J. (1996 a) ITE Merlewood land classification of Great Britain. Journal of Biogeography 23: 625634.CrossRefGoogle Scholar
Bunce, R.G.H., Carey, P.D., Elena-Rosello, R., Orr, J., Watkins, J. & Fuller, R. (2002) A comparison of different biogeographical classifications of Europe, Great Britain and Spain. Journal of Environmental Management 65: 121134.CrossRefGoogle ScholarPubMed
Bunce, R.G.H., Metzger, M.J., Jongman, R.H.G., Brandt, J., De Blust, G., Elena-Rossello, R., Groom, G.B., Halada, L., Hofer, G., Howard, D.C., Kovar, P., Mücher, C.A., Padoa-Schioppa, E., Palinckx, D., Palo, A., Perez-Soba, M., Ramos, I.L., Roche, P., Skånes, H. & Wrbka, T. (2008) A standardized procedure for surveillance and monitoring of European habitats and provision of spatial data. Landscape Ecology (in press) DOI: 10.1007/s10980-007-9173-8Google Scholar
Bunce, R.G.H., Watkins, J.W. & Gillespie, M.K. (1996 b) The Cairngorm environment in a European context and the potential for change. Botanical Journal of Scotland 48: 127135.Google Scholar
Bunce, R.G.H., Watkins, J.W., Brignall, P. & Orr, J. (1996 c) A comparison of the environmental variability within the European Union. In: Ecological and Landscape Consequences of Land Use Change in Europe, ed. Jongman, R.H.G., pp. 8290. Tilburg, the Netherlands: European Centre for Nature Conservation.Google ScholarPubMed
Del Barrio, G., Harrison, P.A., Berry, P.M., Butt, N., Sanjuan, M.E., Pearson, R.G. & Dawson, T. (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: comparison and implications for policy. Environmental Science and Policy 9: 129147.CrossRefGoogle Scholar
EEA (2004) Impacts of Europe's Changing Climate. An Indicator-based Assessment. EEA Report No. 2/2004. Copenhagen, Denmark: European Environment Agency.Google Scholar
ESRI (2002) ArcGIS 8.2. Redlands, California: Environmental Systems Research Incorporated.Google Scholar
Ewert, F., Rounsevell, M.D.A., Reginster, I., Metzger, M.J. & Leemans, R. (2005) Future scenarios of European agricultural land use. I: Estimating changes in crop productivity. Agriculture, Ecosystems and Environment 107: 101116.CrossRefGoogle Scholar
Ewert, F., Rounsevell, M., Reginster, I., Metzger, M. & Leemans, R. (2006) Technology development and climate change as drivers of future agricultural land use. In: Agriculture and Climate Beyond 2015, ed. Brouwer, F. & McCarl, B., pp. 3351. Dordrecht, the Netherlands: Springer Academic Publishers.Google Scholar
Fisher, R.A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics 8: 376386.CrossRefGoogle Scholar
Harrison, P.A., Berry, P.M., Butt, N. & New, M. (2006) Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environmental Science and Policy 9: 116128.Google Scholar
Hill, J.K., Thomas, C.D. & Huntley, B. (1999) Climate and habitat availability determine 20th century changes in butterfly's range margin. Proceedings of the Royal Society of London B 266: 11971206.Google Scholar
Hulme, M., Conway, D., Jones, P.D., Jiang, T., Barrow, E.M. & Turney, C. (1995) Construction of a 1961–90 European climatology for climate change modelling and impact applications. International Journal of Climatology 15: 13331363.CrossRefGoogle Scholar
IMAGE Team (2001) The IMAGE 2.2 Implementation of the SRES Scenarios: a Comprehensive Analysis of Emissions, Climate Change and Impacts in the 21st Century. Bilthoven, the Netherlands: National Institute of Public Health and the Environment (RIVM).Google Scholar
IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge UK: Cambridge University Press.Google Scholar
IPCC (2007 a) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC (2007 b) Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK: Cambridge University Press.Google Scholar
Jongman, R.H.G., Bunce, R.G.H., Metzger, M.J., Mücher, C.A., Howard, D.C. & Mateus, V.L. (2006) Objectives and applications of a statistical environmental stratification of Europe. Landscape Ecology 21: 409419.CrossRefGoogle Scholar
Köble, R. & Seufert, G. (2001) Novel maps for forest tree species in Europe. Proceedings of the 8th European Symposium on the Physico-Chemical Behaviour of Air Pollutants: A Changing Atmosphere!, Torino, Italy, 17–20 September 2001[www document]. URL http://ccu.jrc.it/Pubblications/tree_species_maps.pdfGoogle Scholar
Leemans, R., Cramer, W.P. & van Minnen, J.G. (1996) Prediction of global biome distribution using bioclimatic equilibrium models. In: Effects of Global Change on Coniferous Forests and Grasslands, ed. Melillo, J.M. & Breymeyer, A., pp. 413450. New York, USA: J. Wiley and Sons.Google Scholar
McLachlan, G.J. (1992) Discriminant Analysis and Statistical Pattern Recognition. New York, USA: John Wiley and Sons.CrossRefGoogle Scholar
Metzger, M.J. & Schröter, D. (2006) Towards a spatially and quantitative vulnerability assessment of environmental change in Europe. Regional Environmental Change 6: 201216.CrossRefGoogle Scholar
Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Mücher, C.A. & Watkins, J.W. (2005 a) A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549563.CrossRefGoogle Scholar
Metzger, M.J., Leemans, R. & Schröter, D.S. (2005 b) A multidisciplinary multi-scale framework for assessing vulnerability to global change. International Journal of Applied Geo-information and Earth Observation 7: 253267.CrossRefGoogle Scholar
Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M. & New, M. (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper No. 55. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK.Google Scholar
Mücher, C.A., Champeaux, J.L., Steinnocher, K.T., Griguolo, S., Wester, K., Heunks, C., Winiwater, W., Kressler, F.P., Goutorbe, J.P., ten Brink, B., van Katwijk, V.F., Furberg, O., Perdigao, V. & Nieuwenhuis, G.J.A. (2001) Development of a Consistent Methodology to Derive Land Cover Information on a European Scale from Remote Sensing for Environmental Monitoring: the PELCOM Report. Wageningen, the Netherlands: Alterra Green World Research.Google Scholar
Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., la Rovere, E.L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooyen, S., Victor, N. & Dadi, Z. (2000) IPCC Special Report on Emissions Scenarios (SRES). Cambridge, UK: Cambridge University Press.Google Scholar
New, M., Lister, D., Hulme, M. & Maken, I. (2002) A high-resolution dataset of surface climate over global land areas. Climate Research 21: 125.Google Scholar
Opdam, P. & Wascher, D. (2004) Climate change meets habitats fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation 117: 285297.Google Scholar
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A. & Solomon, A.M. (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19: 117134.CrossRefGoogle Scholar
Reid, W.V., Mooney, H.A., Cropper, A., Capistrano, D., Carpenter, S.R., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A.K., Hassan, R., Kasperson, R., Leemans, R., May, R.M., McMichael, A.J., Pingali, P., Samper, C., Scholes, R., Watson, R.T., Zakri, A.H., Shidong, Z., Ash, N.J., Bennett, E., Kumar, P., Lee, M.J., Raudsepp-Hearne, C., Simons, H., Thonell, J. & Zurek, M.B. (2005) Millennium Ecosystem Assessment Synthesis report. Washington, DC, USA: Island Press.Google Scholar
Rounsevell, M.D.A., Reginster, I., Araújo, M.B., Carter, T.R., Dendoncker, N., Ewert, F., House, J.I., Kankaanpää, S., Leemans, R., Metzger, M.J., Schmit, C., Smith, P. & Tuck, G. (2006) A coherent set of future land use change scenarios for Europe. Agriculture Ecosystems and Environment 114: 5768.Google Scholar
Ruosteenoja, K., Carter, T.R., Jylhä, K. & Tuomenvirta, H. (2003) Future Climate in World Regions: an Intercomparison of Model-based Projections for the New IPCC Emissions Scenarios. The Finnish Environment 644. Helsinki, Finland: Finnish Environment Institute.Google Scholar
Sabaté, S., Gracia, C.A. & Sánchez, A. (2002) Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management 162: 2337.CrossRefGoogle Scholar
Schröter, D., Cramer, W., Leemans, R., Prentice, I.C., Araújo, M.B., Arnell, N.W., Bondeau, A., Bugmann, H., Carter, T.R., Garcia, C.A., de la Vega-Leinert, A.C., Erhard, M., Ewert, F., Glendining, M., House, J.I., Kankaanpää, S., Klein, R.J.T., Lavorel, S., Lindner, M., Metzger, M.J., Meyer, J., Mitchell, T.D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S. & Zierl, B. (2005) Ecosystem service supply and human vulnerability to global change in Europe. Science 310: 13331337.CrossRefGoogle ScholarPubMed
Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K. & Venevsky, S. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model. Global Change Biology 9: 161185.Google Scholar
Sparks, T.H., Roy, D.B. & Dennis, R.L.H. (2005) The influence of temperature on migration of Lepidoptera into Britain. Global Change Biology 11: 507514.CrossRefGoogle Scholar
SPSS (2001) SPSS Version 11.0. Chicago, USA: SPSS.Google Scholar
Tchebakova, N.M., Monserud, R.A., Leemans, R. & Golovanov, S. (1993) A global vegetation model based on the climatological approach of Budyko. Journal of Biogeography 20: 219244.CrossRefGoogle Scholar
Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. & Prentice, I.C. (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United Sates of America 102: 82458250.CrossRefGoogle ScholarPubMed
Verboom, J., Alkemade, L.R.M., Klijn, J., Metzger, M.J. & Reijnen, R. (2007) Combining biodiversity modelling with political and economic development scenarios for 25 EU countries. Ecological Economics 62: 267276.Google Scholar
Viner, D. (2002) A qualitative assessment of the sources of uncertainty in climate change impacts assessment studies: a short discussion paper. Advances in Global Change Research 10: 139151.Google Scholar
Supplementary material: File

Metzger et al. supplementary material

Supplementary material

Download Metzger et al. supplementary material(File)
File 8.4 MB