Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T04:17:04.570Z Has data issue: false hasContentIssue false

Comparative real-time PCR and enzyme analysis of selected gender-associated molecules in Schistosoma japonicum

Published online by Cambridge University Press:  25 February 2008

L. MOERTEL
Affiliation:
Queensland Institute of Medical Research, and Australian Centre for International Health and Nutrition, Herston, QLD 4029, Australia
G. N. GOBERT*
Affiliation:
Queensland Institute of Medical Research, and Australian Centre for International Health and Nutrition, Herston, QLD 4029, Australia
D. P. McMANUS
Affiliation:
Queensland Institute of Medical Research, and Australian Centre for International Health and Nutrition, Herston, QLD 4029, Australia
*
*Corresponding author: Tel: +61 7 33620406. Fax: +61 7 33620104. E-mail: geoffG@qimr.edu.au

Summary

Schistosomes are complex parasitic helminths with discrete life-cycle stages, adapted for survival in their mammalian and snail hosts and the external aquatic environment. Recently, we described the fabrication and use of a microarray to investigate gender-specific transcription in Schistosoma japonicum. To address transcriptional differences, 8 gender-associated gene transcripts identified previously by the microarray analysis were selected for further study. First, differential transcription patterns were investigated in 4 developmental stages using real-time PCR. Subsequently, we undertook functional analysis of a subset of 4 transcripts encoding metabolic enzymes, so as to correlate gender-associated transcript levels with enzyme activity in protein extracts from adult worms. The 8 characterized molecules serve as a basis for further investigation of differential gene expression during the schistosome life-cycle and for studying the sexual dimorphism of adult worms. Continual refinement and annotation of the microarray used in the current study should support future work on these aspects.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anfosso, L., Efferth, T., Albini, A. and Pfeffer, U. (2006). Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics Journal 6, 269278.CrossRefGoogle ScholarPubMed
Brady, C. P., Dowd, A. J., Brindley, P. J., Ryan, T., Day, S. R. and Dalton, J. P. (1999). Recombinant expression and localization of Schistosoma mansoni cathepsin L1 support its role in the degradation of host hemoglobin. Infection and Immunity 67, 368374.CrossRefGoogle ScholarPubMed
Bustin, S. A. and Nolan, T. (2004). Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of Biomolecular Techniques 15, 155166.Google ScholarPubMed
Camacho, M. and Agnew, A. (1995). Glucose uptake rates by Schistosoma mansoni, S. haematobium, and S. bovis adults using a flow in vitro culture system. Journal of Parasitology 81, 637640.CrossRefGoogle ScholarPubMed
Cesari, I. M., Ballen, D. E., Perrone, T., Oriol, O., Hoebeke, J. and Bout, D. (2000). Enzyme activities in Schistosoma mansoni soluble egg antigen. Journal of Parasitology 86, 11371140.CrossRefGoogle ScholarPubMed
Chai, M., McManus, D. P., McInnes, R., Moertel, L., Tran, M., Loukas, A., Jones, M. K. and Gobert, G. N. (2006). Transcriptome profiling of lung schistosomula, in vitro cultured schistosomula and adult Schistosoma japonicum. Cellular and Molecular Life Sciences 63, 919929.CrossRefGoogle ScholarPubMed
Dalton, J. P., Day, S. R., Drew, A. C. and Brindley, P. J. (1997). A method for the isolation of schistosome eggs and miracidia free of contaminating host tissues. Parasitology 115, 2932.CrossRefGoogle ScholarPubMed
Fan, H., Huang, M., Wang, Q. and Li, M. J. (2002). Article in Chinese [Effect of MNNG on ornithine decarboxylase activity in cells from adult Schistosoma japonicum]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi (Chinese Journal of Parasitology and Parasitic Diseases) 20, 3536.Google Scholar
Fitzpatrick, J. M. and Hoffmann, K. F. (2006). Dioecious Schistosoma mansoni express divergent gene repertoires regulated by pairing. International Journal for Parasitology 36, 10811089.CrossRefGoogle ScholarPubMed
Fitzpatrick, J. M., Johansen, M. V., Johnston, D. A., Dunne, D. W. and Hoffmann, K. F. (2004). Gender-associated gene expression in two related strains of Schistosoma japonicum. Molecular and Biochemical Parasitology 136, 191209.CrossRefGoogle ScholarPubMed
Fitzpatrick, J. M., Johnston, D. A., Williams, G. M., Williams, D. J., Freeman, T. C., Dunne, D. W. and Hoffmann, K. F. (2005). An oligonucleotide microarray for transcriptome analysis of Schistosoma mansoni and its application/use to investigate gender-associated gene expression. Molecular and Biochemical Parasitology 141, 113.CrossRefGoogle ScholarPubMed
Gobert, G. N., McInnes, R., Moertel, L. P., Nelson, C., Jones, M. K., Hu, W. and McManus, D. P. (2006). Transcriptomics tool for the human blood flukes Schistosoma using microarray gene expression. Experimental Parasitology 114, 160172.CrossRefGoogle ScholarPubMed
Gobert, G. N., Stenzel, D. J., McManus, D. P. and Jones, M. K. (2003). The ultrastructural architecture of the adult Schistosoma japonicum tegument. International Journal for Parasitology 33, 15611575.CrossRefGoogle ScholarPubMed
Gryseels, B., Polman, K., Clerinx, J. and Kestens, L. (2006). Human schistosomiasis. Lancet 368, 11061118.CrossRefGoogle ScholarPubMed
Guerra-Sa, R., Franco, G. R., Pena, S. D. and Rodrigues, V. (1998). Lactate dehydrogenase: sequence and analysis of its expression during the life cycle of Schistosoma mansoni. Memorias do Instituto Oswaldo Cruz 93 (Suppl. 1), 205206.CrossRefGoogle ScholarPubMed
Hoffmann, K. F. (2004). An historical and genomic view of schistosome conjugal biology with emphasis on sex-specific gene expression. Parasitology 128, S11S22.CrossRefGoogle ScholarPubMed
Hoffmann, K. F., Johnston, D. A. and Dunne, D. W. (2002). Identification of Schistosoma mansoni gender-associated gene transcripts by cDNA microarray profiling. Genome Biology 3, 0041.0041–0041.0011.CrossRefGoogle ScholarPubMed
Hu, W., Yan, Q., Shen, D. K., Liu, F., Zhu, Z. D., Song, H. D., Xu, X. R., Wang, Z. J., Rong, Y. P., Zeng, L. C., Wu, J., Zhang, X., Wang, J. J., Xu, X. N., Wang, S. Y., Fu, G., Zhang, X. L., Wang, Z. Q., Brindley, P. J., McManus, D. P., Xue, C. L., Feng, Z., Chen, L. and Han, Z. G. (2003). Evolutionary and biomedical implications of a Schistosoma japonicum complimentary DNA resource. Nature Genetics 35, 139147.CrossRefGoogle Scholar
Jolly, E. R., Chin, C. S., Miller, S., Bahgat, M. M., Lim, K. C., DeRisi, J. and McKerrow, J. H. (2007). Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biology 8, R65.CrossRefGoogle ScholarPubMed
Jones, M. K., Gobert, G. N., Zhang, L., Sunderland, P. and McManus, D. P. (2004). The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions. Bioessays 26, 752765.CrossRefGoogle ScholarPubMed
Kawanaka, M., Hayashi, S. and Carter, C. E. (1986). Uptake and excretion of amino acids and utilization of glucose by Schistosoma japonicum eggs. Japanese Journal of Medical Science and Biology 39, 199206.CrossRefGoogle ScholarPubMed
King, C. H. (2007). Lifting the burden of schistosomiasis–defining elements of infection-associated disease and the benefits of antiparasite treatment. Journal of Infectious Diseases 196, 653655.CrossRefGoogle ScholarPubMed
King, C. H., Dickman, K. and Tisch, D. J. (2005). Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365, 15611569.CrossRefGoogle ScholarPubMed
Li, Z., Yu, X. B., Wu, Z. D. and Hu, X. C. (2006). article in Chinese [Identification of the SjARG novel gene and study on its protective potential as a vaccine]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi (Chinese Journal of Parasitology and Parasitic Diseases) 24, 8691.Google ScholarPubMed
Linzmeier, R. M. and Ganz, T. (2006). Copy number polymorphisms are not a common feature of innate immune genes. Genomics 88, 122126.CrossRefGoogle Scholar
Liu, F., Lu, J., Hu, W., Wang, S. Y., Cui, S. J., Chi, M., Yan, Q., Wang, X. R., Song, H. D., Xu, X. N., Wang, J. J., Zhang, X. L., Zhang, X., Wang, Z. Q., Xue, C. L., Brindley, P. J., McManus, D. P., Yang, P. Y., Feng, Z., Chen, Z. and Han, Z. G. (2006). New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathogens 2, e29.CrossRefGoogle ScholarPubMed
Lu, G., Hu, X., Peng, Z., Xie, H., Li, Y., Wu, Z. and Yu, X. (2006). Expression and characterization of lactate dehydrogenase from Schistosoma japonicum. Parasitology Research 99, 593596.CrossRefGoogle ScholarPubMed
McMillan, P. J., Stimmler, L. M., Foth, B. J., McFadden, G. I. and Muller, S. (2005). The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Molecular Microbiology 55, 2738.CrossRefGoogle ScholarPubMed
Michel, A., Ghoneim, H., Resto, M., Klinkert, M. Q. and Kunz, W. (1995). Sequence, characterization and localization of a cysteine proteinase cathepsin L in Schistosoma mansoni. Molecular and Biochemical Parasitology 73, 718.CrossRefGoogle ScholarPubMed
Moertel, L., McManus, D. P., Piva, T. J., Young, L., McInnes, R. L. and Gobert, G. N. (2006). Oligonucleotide microarray analysis of strain- and gender-associated gene expression in the human blood fluke, Schistosoma japonicum. Molecular and Cellular Probes 20, 280289.CrossRefGoogle ScholarPubMed
Moller, J. V., le Maire, M. and Andersen, J. P. (1988). Use of detergents to solubilize the Ca2+-pump protein as monomers and defined oligomers. Methods in Enzymology 157, 261270.CrossRefGoogle ScholarPubMed
Muller, I. B., Walter, R. D. and Wrenger, C. (2005). Structural metal dependency of the arginase from the human malaria parasite Plasmodium falciparum. Biological Chemistry 386, 117126.CrossRefGoogle ScholarPubMed
NCBI (2006). National center for biotechnology information. http://www.ncbi.nlm.nih.gov/Google Scholar
Noel, F., Cunha, V. M., Silva, C. L. and Mendonca-Silva, D. L. (2001). Control of calcium homeostasis in Schistosoma mansoni. Memorias do Instituto Oswaldo Cruz 96 (Suppl.), 8588.CrossRefGoogle ScholarPubMed
Reis, M. G., Kuhns, J., Blanton, R. and Davis, A. H. (1989). Localization and pattern of expression of a female specific mRNA in Schistosoma mansoni. Molecular and Biochemical Parasitology 32, 113119.CrossRefGoogle ScholarPubMed
Talla, E., de Mendonca, R. L., Degand, I., Goffeau, A. and Ghislain, M. (1998). Schistosoma mansoni Ca2+-ATPase SMA2 restores viability to yeast Ca2+-ATPase-deficient strains and functions in calcineurin-mediated Ca2+ tolerance. Journal of Biological Chemistry 273, 2783127840.CrossRefGoogle ScholarPubMed
Tran, M. H., Pearson, M. S., Bethony, J. M., Smyth, D. J., Jones, M. K., Duke, M., Don, T. A., McManus, D. P., Correa-Oliveira, R. and Loukas, A. (2006). Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nature Medicine 12, 835840.CrossRefGoogle ScholarPubMed
Verjovski-Almeida, S., DeMarco, R., Martins, E. A. L., Guimaraes, P. E. M., Ojopi, E. P. B., Paquola, A. C. M., Piazza, J. P., Nishiyama, M. Y., Kitajima, J. P. Jr., Adamson, R. E., Ashton, P. D., Bonaldo, M. F., Coulson, P. S., Dillon, G. P., Farias, L. P., Gregorio, S. P., Ho, P. L., Leite, R. A., Malaquis, L. C. C., Marques, R. C. P., Miyasato, P. A., Nascimento, A. L. T. O., Ohlweiler, F. P., Reis, E. M., Ribeiro, M. A., Sa, R. G., Stukart, G. C., Soares, M. B., Gargioni, C., Kawano, T., Rodrigues, V., Maderia, A. M. B. N., Wilson, R. A., Menck, C. F. M., Setubal, J. C., Leite, L. C. C. and Dias-Neto, E. (2003). Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nature Genetics 35, 148157.CrossRefGoogle ScholarPubMed
Vermeire, J. J., Osman, A., LoVerde, P. T. and Williams, D. L. (2003). Characterisation of a Rho homologue of Schistosoma mansoni. International Journal for Parasitology 33, 721731.CrossRefGoogle ScholarPubMed
Vermeire, J. J., Taft, A. S., Hoffmann, K. F., Fitzpatrick, J. M. and Yoshino, T. P. (2006). Schistosoma mansoni: DNA microarray gene expression profiling during the miracidium-to-mother sporocyst transformation. Molecular and Biochemical Parasitology 147, 3947.CrossRefGoogle ScholarPubMed
Wiwanitkit, V. (2007). Plasmodium and host lactate dehydrogenase molecular function and biological pathways: implication for antimalarial drug discovery. Chemical Biology and Drug Design 69, 280283.CrossRefGoogle ScholarPubMed
Wuhrer, M., Koeleman, C. A., Fitzpatrick, J. M., Hoffmann, K. F., Deelder, A. M. and Hokke, C. H. (2006). Gender-specific expression of complex-type N-glycans in schistosomes. Glycobiology 16, 9911006.CrossRefGoogle ScholarPubMed
Xiao, S. H. (2005). Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Tropica 96, 153167.Google Scholar