Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T01:37:13.953Z Has data issue: false hasContentIssue false

The role of biotic factors in the transmission of free-living endohelminth stages

Published online by Cambridge University Press:  22 January 2008

D. W. THIELTGES*
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
K. T. JENSEN
Affiliation:
Marine Ecology, Department of Biological Sciences, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus, Denmark
R. POULIN
Affiliation:
Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
*
*Corresponding author: Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand. E-mail: David.Thieltges@otago.ac.nz

Summary

The transmission success of free-living larval stages of endohelminths is generally modulated by a variety of abiotic and biotic environmental factors. Whereas the role of abiotic factors (including anthropogenic pollutants) has been in focus in numerous studies and summarized in reviews, the role of biotic factors has received much less attention. Here, we review the existing body of literature from the fields of parasitology and ecology and recognize 6 different types of biotic factors with the potential to alter larval transmission processes. We found that experimental studies generally indicate strong effects of biotic factors, and the latter emerge as potentially important, underestimated determinants in the transmission ecology of free-living endohelminth stages. This implies that biodiversity, in general, should have significant effects on parasite transmission and population dynamics. These effects are likely to interact with natural abiotic factors and anthropogenic pollutants. Investigating the interplay of abiotic and biotic factors will not only be crucial for a thorough understanding of parasite transmission processes, but will also be a prerequisite to anticipate the effects of climate and other global changes on helminth parasites and their host communities.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achinelly, M. F., Micielli, M. V. and Garciía, J. J. (2003). Pre-parasitic juveniles of Strelkovimermis spiculatus Poinar & Camino, 1986 (Nematoda: Mermithidae) predated upon by freshwater copepods (Crustacea: Copepoda). Nematology 5, 885888.CrossRefGoogle Scholar
Backlund, H. O. (1949). En kommensal som äter sitt värddjurs parasiter. Fauna og Flora 44, 3841.Google Scholar
Barbosa, F. S. and Carneiro, E. (1965). Penetration of Schistosoma mansoni miracidia in abnormal hosts. Revista do Instituto de Medicina Tropical de Sao Paulo 7, 99102.Google ScholarPubMed
Barger, M. A. and Nickol, B. B. (1998). Structure of Leptorhynchoides thecatus and Pomphorhynchus bulbocolli (Acanthocephala) eggs in habitat partitioning and transmission. Journal of Parasitology 84, 534537.CrossRefGoogle ScholarPubMed
Bartoli, P. and Boudouresque, C.-F. (1997). Transmission failure of parasites (Digenea) in sites colonized by the recently introduced invasive alga Caulerpa taxifolia. Marine Ecology Progress Series 154, 253260.CrossRefGoogle Scholar
Basch, P. F. and Altomar, L. Jr. (1969). Penetration of strigeid cercariae into Chaetogaster limnaei. Transactions of the American Microscopical Society 88, 593595.CrossRefGoogle ScholarPubMed
Basualdo, J. A., Ciarmela, M. L., Sarmiento, P. L. and Minvielle, M. C. (2000). Biological activity of Paecilomyces lilacinus genus against Toxocara canis eggs. Parasitology Research 86, 854859.CrossRefGoogle ScholarPubMed
Baudena, M. A., Chapman, M. R., Larsen, M. and Klei, T. R. (2000). Efficacy of the nematophagous fungus Duddingtonia flagrans in reducing equine cyathostome larvae on pasture in south Louisiana. Veterinary Parasitology 89, 219230.CrossRefGoogle ScholarPubMed
Bone, L. W., Bottjer, K. P. and Gill, S. S. (1985). Trichostrongylus colubriformis: egg lethality due to Bacillus thuringiensis crystal toxin. Experimental Parasitology 60, 314322.CrossRefGoogle ScholarPubMed
Bone, L. W., Bottjer, K. P. and Gill, S. S. (1986). Trichostrongylus colubriformis: isolation and characterization of ovicidal activity from Bacillus thuringiensis israelensis. Experimental Parasitology 62, 247253.CrossRefGoogle ScholarPubMed
Bone, L. W., Bottjer, K. P. and Gill, S. S. (1987). Alteration of Trichostrongylus colubriformis egg permeability by Bacillus thuringiensis israelensis toxin. Journal of Parasitology 73, 295299.CrossRefGoogle ScholarPubMed
Bottjer, K. P., Bone, L. W. and Gill, S. S. (1985). Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Experimental Parasitology 60, 239244.CrossRefGoogle ScholarPubMed
Bryan, R. P. (1973). The effects of dung beetle activity on the numbers of parasitic gastrointestinal helminth larvae recovered from pasture samples. Australian Journal of Agricultural Research 24, 161168.CrossRefGoogle Scholar
Bryan, R. P. (1976). The effect of the dung beetle, Onthophagus gazella, on the ecology of the infective larvae of gastrointestinal nematodes of cattle. Australian Journal of Agricultural Research 27, 567574.CrossRefGoogle Scholar
Bryan, R. P. and Kerr, J. D. (1989). Factors affecting the survival and migration of the free-living stages of gastrointestinal nematode parasites of cattle in Central Queensland. Veterinary Parasitology 30, 315326.CrossRefGoogle ScholarPubMed
Butler, J. B. and Buckley, J. J. C. (1927). Catenaria anguillulae as a parasite of the ova of Fasciola hepatica. Scientific Proceedings of the Royal Dublin Society 18, 497512.Google Scholar
Canning, E. U. (1975). The Microsporidian Parasites of Platyhelminthes: Their Morphology, Development, Transmission and Pathogenicity. Commonwealth Agricultural Bureaux, Fanham Royal, Bucks, England.Google Scholar
Canning, E. U., Barker, R. J., Hammond, J. C. and Nicholas, J. P. (1983). Unikaryon slaptonleyi sp. nov. (Microspora: Unikaryonidae) isolated from echinostome and strigeid larvae from Lymnaea peregra: observations on its morphology, transmission and pathogenicity. Parasitology 87, 175184.CrossRefGoogle Scholar
Chernin, E. (1968). Interference with the capacity of Schistosoma mansoni miracidia to infect the molluscan host. Journal of Parasitology 54, 509516.CrossRefGoogle ScholarPubMed
Chernin, E. and Perlstein, J. M. (1969). Further studies on interference with the host-finding capacity of Schistosoma mansoni miracidia. Journal of Parasitology 55, 500508.CrossRefGoogle ScholarPubMed
Chernin, E. and Perlstein, J. M. (1971). Protection of snails against miracidia of Schistosoma mansoni by various aquatic invertebrates. Journal of Parasitology 57, 217219.CrossRefGoogle ScholarPubMed
Christensen, N. O. (1979). Schistosoma mansoni: interference with cercarial host-finding by various aquatic organisms. Journal of Helminthology 53, 714.CrossRefGoogle ScholarPubMed
Christensen, N. O., Frandsen, F. and Nansen, P. (1980). The interaction of some environmental factors influencing Schistosoma mansoni cercarial host-finding. Journal of Helminthology 54, 203205.CrossRefGoogle ScholarPubMed
Christensen, N. O., Nansen, P. and Frandsen, F. (1976). Molluscs interfering with the capacity of Fasciola hepatica miracidia to infect Lymnaea trunculata. Parasitology 73, 161167.CrossRefGoogle Scholar
Christensen, N. O., Nansen, P. and Frandsen, F. (1977). Interference with Fasciola hepatica snail finding by various aquatic organisms. Parasitology 74, 285290.CrossRefGoogle ScholarPubMed
Ciarmela, M. L., Sanchez Thevenet, P., Alvarz, H. M., Minvielle, M. C. and Basualdo, J. A. (2005). Effect of Paecilomyces lilacinus on the viability of oncospheres of Taenia hydatigena. Veterinary Parasitology 131, 6164.CrossRefGoogle ScholarPubMed
Coelho, M. V. (1957). Aspectos do des envolvimento das formas larvais de “Schistosoma murlsorri” em “Australorbis nigricans.” Revista Brasileira de Biologia 17, 325337.Google Scholar
Combes, C. and Moné, H. (1987). Possible mechanisms of decoy effect in Schistosoma mansoni transmission. International Journal for Parasitology 17, 971975.CrossRefGoogle ScholarPubMed
Duddington, C. L. (1962). Predacious fungi and the control of eelworms. In Viewpoints in Biology, Vol. 1 (ed. Carthy, J. D. and Duddington, C. L.), pp. 151200. Butterworths, London.Google Scholar
English, A. W. (1979). The effects of dung beetles (Coleoptera-Scarabaeinae) on the free-living stages of strongylid nematodes of the horse. Australian Veterinary Journal 55, 315321.CrossRefGoogle ScholarPubMed
Evans, N. A. and Gordon, D. M. (1983). Experimental observations on the specificity of Echinoparyphium recurvatum toward second intermediate hosts. Zeitschrift fuer Parasitenkunde 69, 217222.CrossRefGoogle Scholar
Faedo, M., Larsen, M. and Grønvold, J. (2002). Predacious activity of Duddingtonia flagrans within the cattle faecal pat. Journal of Helminthology 76, 295302.CrossRefGoogle ScholarPubMed
Fagbemi, B. O. (1984). The effects of environmental factors on the development, behaviour and survival of Paramphistomum microbothrium miracidia. Veterinary Parasitology 16, 7181.CrossRefGoogle ScholarPubMed
Fernández, A. S., Larsen, M., Nansen, P., Grønvold, J., Henriksen, S. A. and Wolstrup, J. (1997). Effect of the nematode-trapping fungus Duddingtonia flagrans on the free-living stages of horse parasitic nematodes: a plot study. Veterinary Parasitology 73, 257266.CrossRefGoogle Scholar
Fernandez, J., Goater, T. M. and Esch, G. W. (1991). Population dynamics of Cheatogaster limnaei limnaei (Oligochaeta) as affected by a trematode parasite in Helisoma anceps (Gastropoda). American Midland Naturalist 125, 195205.CrossRefGoogle Scholar
Fincher, G. T. (1973). Dung beetles as biological control agents for gastrointestinal parasites of livestock. Journal of Parasitology 59, 396399.CrossRefGoogle ScholarPubMed
Fincher, G. T. (1975). Effects of dung beetle activity on the number of nematode parasites acquired by grazing cattle. Journal of Parasitology 61, 759762.CrossRefGoogle ScholarPubMed
Frandsen, F. (1976). The suppression, by Helisoma duryi, of the cercarial production of Schistosoma mansoni-infected Biomphalaria pfeifferi. Bulletin of the World Health Organization 53, 385390.Google ScholarPubMed
Giboda, M. and Lýsek, H. (1970). Einfluss der Bodenorganismen auf das Überleben der Askarideneier. Helminthologia 11, 14.Google Scholar
Gibson, M. and Warren, K. S. (1970). Capture of Schistosoma mansoni miracidia and cercariae by carnivorous aquatic vascular plants of the genus Utricularia. Bulletin of the World Health Organization 42, 833835.Google ScholarPubMed
Glaudel, R. J. and Etges, F. J. (1973). Toxic effects of freshwater turbellarians on schistosome miracidia. Journal of Parasitology 59, 7476.CrossRefGoogle ScholarPubMed
Grønvold, J. (1987). Field experiment on the ability of earthworms (Lumbricidae) to reduce the transmission of infective larvae of Cooperia oncophora (Trichostrongylidae) from cow pats to grass. Journal of Parasitology 73, 11331137.CrossRefGoogle ScholarPubMed
Grønvold, J., Sommer, C., Hotter, P. and Nansen, P. (1992). Reduced splash dispersal of bovine parasitic nematodes from cow pats by the dung beetle Diastellopalpus quinquedens. Journal of Parasitology 78, 845848.CrossRefGoogle Scholar
Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. and Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science 296, 21582162.CrossRefGoogle ScholarPubMed
Ibrahim, M. M. (2007). Population dynamics of Chaetogaster limnaei (Oligochaeta: Naididae) in the field populations of freshwater snails and its implications as a potential regulator of trematode larvae community. Parasitology Research 101, 2533.CrossRefGoogle ScholarPubMed
Keesing, F., Holt, R. D. and Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters 9, 485498.CrossRefGoogle ScholarPubMed
Ketzis, J. K., Vercruysse, J., Stromberg, B. E., Larsen, M., Athanasiadou, S. and Houdijk, J. G. M. (2006). Evaluation of efficacy expectations for novel and non-chemical helminth control strategies in ruminants. Veterinary Parasitology 139, 321335.CrossRefGoogle ScholarPubMed
Khalil, L. F. (1961). On the capture and destruction of miracidia by Chaetogaster limnaei (Oligochaeta). Journal of Helminthology 35, 269274.CrossRefGoogle ScholarPubMed
Khan, R. A. and Thulin, J. (1991). Influence of pollution on parasites of aquatic animals. Advances in Parasitology 30, 201238.CrossRefGoogle ScholarPubMed
Knapp, S. E. (1964). Relationship of different species of forage to the survival and infectivity of Haemonchus contortus in lambs. Journal of Parasitology 50, 144148.CrossRefGoogle Scholar
Knapp, S. E., Baldwin, N. L. and Presidente, P. J. (1972). Experimental transmission of an isolate of Nosema strigeoideae Hussey 1971 to Fasciola hepatica. Journal of Parasitology 58, 12061207.CrossRefGoogle ScholarPubMed
Knight, W. B., Ritchie, L. S., Liard, F. and Chiriboga, J. (1970). Cercariophagic activity of guppy fish (Lebistes reticulatus) detected by cercariae labelled with radioselenium (75 se). American Journal of Tropical Medicine and Hygiene 19, 620625.CrossRefGoogle Scholar
Krakau, M., Thieltges, D. W. and Reise, K. (2006). Native parasites adopt introduced bivalves of the North Sea. Biological Invasions 8, 919925.CrossRefGoogle Scholar
Lafferty, K. D. (1997). Environmental parasitology: what can parasites tell us about human impact on the environment? Parasitology Today 13, 251255.CrossRefGoogle Scholar
Lafferty, K. D., Dobson, A. P. and Kuris, A. M. (2006). Parasites dominate food web links. Proceedings of the National Academy of Sciences, USA 103, 1121111216.CrossRefGoogle ScholarPubMed
Laracuente, A., Brown, R. A. and Jobin, W. (1979). Comparison of four species of snails as potential decoys to intercept schistosome miracidia. American Journal of Tropical Medicine and Hygiene 28, 99105.CrossRefGoogle ScholarPubMed
Larsen, M., Nansen, P., Grøndahl, C., Thamsborg, S. M., Grønvold, J., Wolstrup, J., Henriksen, S. A. and Monrad, J. (1996). The capacity of the fungus Duddingtonia flagrans to prevent strongyle infections in foals on pasture. Parasitology 113, 16.CrossRefGoogle ScholarPubMed
Lethbridge, R. C. (1971). The hatching of Hymenolepis diminuta and penetration of the hexacanths in Tenebrio molitor beetles. Parasitology 62, 445456.CrossRefGoogle ScholarPubMed
Lýsek, H. (1963). Effect of certain soil organisms on the eggs of parasitic roundworms. Nature, London 199, 925.CrossRefGoogle ScholarPubMed
Lýsek, H. (1978). A scanning electron microscope study of the effect of an ovicidal fungus on the eggs of Ascaris lumbricoides. Parasitology 77, 139141.CrossRefGoogle Scholar
MacKenzie, K. (1999). Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Marine Pollution Bulletin 38, 955959.CrossRefGoogle Scholar
MacKenzie, K., Williams, H. H., Williams, B., McVicar, A. H. and Siddall, R. (1995). Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Advances in Parasitology 35, 85144.CrossRefGoogle ScholarPubMed
Malek, E. A. and Malek, R. R. (1978). Potential biological control of schistosomiasis intermediate hosts by helisome snails. The Nautilus 92, 1518.Google Scholar
Marcogliese, D. J. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology 79, 13311352.CrossRefGoogle Scholar
McCann, K. S. (2000). The diversity-stability debate. Nature, London 405, 228233.CrossRefGoogle ScholarPubMed
van der Meer, J. (2006). Metabolic theories in ecology. Trends in Ecology and Evolution 21, 136140.CrossRefGoogle ScholarPubMed
Michelson, E. H. (1964). The protective action of Chaetogaster limnaei on snails exposed to Schistosoma mansoni. Journal of Parasitology 50, 441444.CrossRefGoogle Scholar
Miller, A., Chi-Rodriguez, E. and Nichols, R. L. (1961). The fate of helminth eggs and protozoan cysts in human faeces ingested by dung beetles (Coleptera: Scarabaeidae). American Journal of Tropical Medicine and Hygiene 10, 748754.CrossRefGoogle Scholar
Möller, H. (1987). Pollution and parasitism in the aquatic environment. International Journal for Parasitology 17, 353361.CrossRefGoogle ScholarPubMed
Mooney, H. A., Mack, R. N., McNeely, J. A., Neville, L. E., Schei, P. J. and Waage, J. K. (2005). Invasive Alien Species: A New Synthesis. Island Press, Washington, DC.Google Scholar
Morley, N. J. and Lewis, J. W. (2004). Free-living endohelminths: the influence of multiple factors. Trends in Parasitology 20, 114115.CrossRefGoogle ScholarPubMed
Moss, R. A. and Vlasshoff, A. (1993). Effect of herbage species on gastro-intestinal roundworm populations and their distribution. New Zealand Journal of Agricultural Research 36, 371375.CrossRefGoogle Scholar
Mouritsen, K. N. and Poulin, R. (2003). The mud flat anemone-cockle association: mutualism in the intertidal zone? Oecologia 135, 131137.CrossRefGoogle ScholarPubMed
Muñoz-Antoli, C., Trelis, M., Gozalbo, M., Toledo, F., Haberl, B. and Esteban, J.-G. (2003). Interactions related to non-host snails in the host-finding process of Euparyphium albuferensis and Echinostoma friedi (Trematoda: Echinostomatidae) miracidia. Parasitology Research 91, 353356.Google ScholarPubMed
Nansen, P., Larsen, M., Roepstorff, A., Grønvold, J., Wolstrup, J. and Henriksen, A. A. (1996). Control of Oesophagostomum dentatum and Hyostrongylus rubidus in outdoor-reared pigs by daily feeding with the microfungus Duddingtonia flagrans. Parasitology Research 82, 580584.CrossRefGoogle ScholarPubMed
Niezen, J. H., Charleston, W. A. G., Hodgson, J., Miller, C. M., Waghorn, T. S. and Robertson, H. A. (1998). Effect of plant species on the larvae of gastrointestinal nematodes which parasitise sheep. International Journal for Parasitology 28, 791803.CrossRefGoogle ScholarPubMed
Novacek, M. J. and Cleland, E. E. (2001). The current biodiversity extinction event: scenarios for mitigation and recovery. Proceedings of the National Academy of Sciences, USA 98, 54665470.CrossRefGoogle ScholarPubMed
Oliver-González, J. (1946). The possible role of the guppy, Lebistes reticulatus, on the biological control of Schistosomiasis mansoni. Science 104, 605.CrossRefGoogle ScholarPubMed
Ostfeld, R. S. and Keesing, F. (2000). Biodiversity and disease risk: the case of Lyme disease. Conservation Biology 14, 722728.CrossRefGoogle Scholar
Overstreet, R. M. (1993). Parasitic diseases of fishes and their relationship with toxicants and other environmental factors. In Pathobiology of Marine and Estuarine Organisms (ed. Couch, J. A. and Fournie, J. W.), pp. 111156. CRC Press, Boca Raton, FL, USA.Google Scholar
Pasternak, A. F., Pulkkinen, K., Mikheev, V. N., Hasu, T. and Valtonen, E. T. (1999). Factors affecting abundance of Triaenophorus infection in Cyclops strenuus, and parasite-induced changes in host fitness. International Journal for Parasitology 29, 17931801.CrossRefGoogle ScholarPubMed
Pellegrino, J., de Maria, M. and de Moura, M. F. (1966). Observations on the predatory activity of Lebistes reticulatus (Peters, 1859) on cercariae of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 15, 337342.CrossRefGoogle ScholarPubMed
Penfold, W. J., Penfold, H. B. and Phillips, M. (1936). Riding pasture of Taenia saginata ova by grazing cattle or sheep. Journal of Helminthology 14, 135140.CrossRefGoogle Scholar
Pietrock, M. and Marcogliese, D. J. (2003). Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology 19, 293299.CrossRefGoogle ScholarPubMed
Poulin, R. (1992). Toxic pollution and parasitism in freshwater fish. Parasitology Today 8, 5861.CrossRefGoogle ScholarPubMed
Poulin, R. (2006). Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143151.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites. Princeton University Press, Princeton and Oxford.CrossRefGoogle Scholar
Pramer, D. (1964). Nematode-trapping fungi. Science 144, 382388.CrossRefGoogle ScholarPubMed
Primack, R. B. (2006). Essentials of Conservation Biology. Sinauer Associates, Sunderland, MA, USA.Google Scholar
Rajasekariah, G. R. (1978). Chaetogaster limnaei K von Baer 1872 on Lymnaea tomentosa: ingestion of Fasciola hepatica cercariae. Experientia 32, 14581459.CrossRefGoogle Scholar
Rodgers, J. K., Sandlan, G. J., Joyce, S. R. and Minchella, D. J. (2005). Multi-species interactions among a commensal (Chaetogaster limnaei limnaei), a parasite (Schistosoma mansoni), and an aquatic snail host (Biomphalaria glabrata). Journal of Parasitology 91, 709712.CrossRefGoogle Scholar
Rössner, J. (1981). Einfluss von Regenwürmern auf phytoparasitäre Nematoden. Nematologica 27, 340348.CrossRefGoogle Scholar
Rössner, J. (1986). Untersuchungen zur Reduktion von Nematoden im Boden durch Regenwürmer. Mededelingen – Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 51, 13111318.Google Scholar
Ruiz, J. M. (1951). Nota sôbre a cercariofagia de um oligochaeta do gênero Chaetogaster v. Baer, 1827. Revista da Faculdade de Odontologia da Universidade de São Paulo 9, 5156.Google Scholar
Sayre, R. M. and Wergin, W. P. (1979). The use of SEM to classify and evaluate the parasites and predators of pest nematodes. Scanning Electron Microscopy 3, 8996.Google Scholar
Schäller, G. (1959). Microsporidienbefall und Degenerationserscheinungen der Trematodenlarven im Zwischenwirt (Tropidiscus planorbis). Zeitschrift für wissenschaftliche Zoologie 162, 144190.Google Scholar
Silangwa, S. M. and Todd, A. C. (1964). Vertical migration of trichostrngylid larvae on grasses. Journal of Parasitology 50, 278285.CrossRefGoogle ScholarPubMed
Thébault, E. and Loreau, M. (2005). Trophic interactions and the relationship between species diversity and ecosystem stability. American Naturalist 166, E95E114.CrossRefGoogle ScholarPubMed
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L. and Williams, S. E. (2004). Extinction risk from climate change. Nature, London 427, 145148.CrossRefGoogle ScholarPubMed
Uglem, G. L. (1972). The life cycle of Neoechinorhynchus cristatus Lynch, 1936 (Acanthocephala) with notes on the hatching of eggs. Journal of Parasitology 58, 10711074.CrossRefGoogle ScholarPubMed
Uglem, G. L. and Larson, O. R. (1969). The life history and larval development of Neoechinorhynchus saginatus Van Cleave and Bangham, 1949 (Acanthocephala: Neoechinorhynchidae). Journal of Parasitology 55, 12121217.CrossRefGoogle Scholar
Upatham, E. S. (1972). Interference by unsusceptible aquatic animals with the capacity of the miracidia of Schistosoma mansoni Sambon to infect Biomphalaria glabrata (Say) under field-simulated conditions in St. Lucia, West Indies. Journal of Helminthology 46, 277283.CrossRefGoogle Scholar
Upatham, E. S. and Sturrock, R. F. (1973). Field investigations on the effect of other aquatic animals on the infection of Biomphalaria glabrata by Schistosoma mansoni miracidia. Journal of Parasitology 59, 448453.CrossRefGoogle ScholarPubMed
Uznanski, R. L. and Nickol, B. B. (1976). Structure and function of the fibrillar coat of Leptorhynchoides thecatus eggs. Journal of Parasitology 62, 569573.CrossRefGoogle ScholarPubMed
Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology 75, 18611876.CrossRefGoogle Scholar
Voge, M. and Graiwer, M. (1964). Development of oncospheres of Hymenolepis diminuta, hatched in vivo and in vitro, in the larvae of Tenebrio molitor. Journal of Parasitology 50, 267270.CrossRefGoogle ScholarPubMed
Waghorn, T. S., Leathwick, D. M., Chen, L.-Y., Gray, R. A. J. and Skipp, R. A. (2002). Influence of nematophagous fungi, earthworms and dung burial on development of the free-living stages of Ostertagia (Teladorsagia) circumcincta in New Zealand. Veterinary Parasitology 104, 119129.CrossRefGoogle ScholarPubMed
Wagin, W. L. (1931). Chaetogaster limnaei K. Baer als Cercarienvertilger. Zoologischer Anzeiger 95, 5559.Google Scholar
Waller, P. J. and Thamsborg, S. M. (2004). Nematode control in ‘green’ ruminant production systems. Trends in Parasitology 20, 493497.CrossRefGoogle ScholarPubMed
Warren, K. S. and Peters, P. A. (1967). Comparison of penetration and maturation of Schistosoma mansoni in the hamster, mouse, guinea pig, rabbit and rat. American Journal of Tropical Medicine and Hygiene 16, 718722.CrossRefGoogle Scholar
Warren, K. S. and Peters, P. A. (1968). Cercariae of Schistosoma mansoni and plants – attempt to penetrate Phaseolus vulgaris and Hedychium coronarium produces a cercaricide. Nature, London 217, 647648.CrossRefGoogle ScholarPubMed
Wesenberg-Lund, C. (1934). Contributions to the development of the trematode digenea. II. The biology of the freshwater cercarie in Danish freshwater waters. Det Kongelige Danske Videnskabernes Selskabs Naturvidenskabelige og Mathematiske Afhandlinger 9, l223.Google Scholar