Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T17:12:21.394Z Has data issue: false hasContentIssue false

Observations of inertial waves in a rectangular basin with one sloping boundary

Published online by Cambridge University Press:  08 October 2003

ASTRID M. M. MANDERS
Affiliation:
Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Texel, The Netherlands
LEO R. M. MAAS
Affiliation:
Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Texel, The Netherlands

Abstract

Inertial waves in a homogeneous rotating fluid travel along rays that are inclined with respect to the rotation axis. The angle of inclination depends solely on the ratio of the wave frequency and twice the angular frequency. Because of this fixed angle, the waves can become focused when reflected at a sloping wall. In an infinitely long channel with a sloping wall, the repeated action of focusing may lead to the approach to a limit cycle, the so-called wave attractor, where the energy is concentrated. This effect is studied in the laboratory in a rectangular tank with one sloping wall, placed excentrically on a rotating table. The waves are excited by modulation of the background rotation. Several frequency ratios are used to study different wave attractors and one standing wave. The observations consist mainly of particle image velocimetry data in horizontal and vertical cross-sections in one half of the basin. The attractors are observed in the vertical cross-sections. They show continuous phase propagation, which distinguishes them from the standing wave where the phase changes at the same time over the whole cross-section. However, particle motion of inertial waves is three-dimensional and the actual basin is not an ideal two-dimensional channel but is of finite length. This implies that the waves must adapt to the vertical endwalls, although a prediction of the nature of these adaptations and the structure of the three-dimensional wave field is at present lacking. For critical waves, whose rays are parallel to the slope, clear three-dimensional behaviour is observed. The location of most intense motion along this critical slope attractor changes in the horizontal direction and horizontal phase propagation is observed, with a wavelength between 1/5 and 1/4 of the basin length. For the other attractors there is little evidence of phase propagation in the horizontal direction. The motion along the attractor is however stronger near the vertical endwalls for attractors with wave rays of slopes close to 1 or larger. The standing wave and the other attractors are more clearly visible near 1/5 of the tank length.

Type
Papers
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)