Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:27:49.089Z Has data issue: false hasContentIssue false

ON THE METHOD OF APPROXIMATION FOR EVOLUTIONARY INCLUSIONS OF PSEUDOMONOTONE TYPE

Published online by Cambridge University Press:  01 February 2008

PAVLO KASYANOV
Affiliation:
Kyiv Taras Shevchenko University, 01033 Kiev, Ukraine (email: kasyanov@univ.kiev.ua)
VALERY MELNIK
Affiliation:
Institute of Applied and System Analysis, Kiev, Ukraine (email: moreva@mmsa.ntu-kpi.kiev.ua)
JOSÉ VALERO
Affiliation:
Centro de Investigación Operativa, Universidad Miguel Hernández Avda Universidad s/n, 03202 Elche, Alicante, Spain (email: jvalero@umh.es)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a large class of operator inclusions, including those generated by maps of pseudomonotone type, we obtain a general theorem on existence of solutions. We apply this result to some particular examples. This theorem is proved using the method of difference approximations.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2008

References

[1]Aubin, J. P. and Ekeland, I., Applied nonlinear analysis (Mir, Moscow, 1988).Google Scholar
[2]Barbu, V., Nonlinear semigroups and differential equations in Banach spaces (Editura Acad., Bucuresti, 1976).CrossRefGoogle Scholar
[3]Brezis, H., ‘Problems unilatéraux’, J. Math. Pures Appl. 51 (1972), 1168.Google Scholar
[4]Browder, F. E. and Hess, P., ‘Nonlinear mappings of monotone type in Banach spaces’, J. Funct. Anal. 11 (1972), 251294.CrossRefGoogle Scholar
[5]Dubinski, Yu. A., ‘Weak convergence in non-linear elliptic and parabolic equations’, Mat. Sb. 67 (1965), 609642 (translated in Am. Math. Soc., II, Ser. 67, (1968), 226–258).Google Scholar
[6]Ekeland, I. R. and Temam, R., Convex analysis and variational problems (North-Holland, Amsterdam, 1976).Google Scholar
[7]Kasyanov, P. O., ‘Galerkin method for a class of differential-operator inclusions with set-valued mappings of pseudomonotone type’, Naukovi Visti NTUU ‘KPI’ 2 (2005), 139151.Google Scholar
[8]Kasyanov, P. O., ‘Galerkin’s method for one class of differential-operator inclusions’, Dopov. Nats. Akad. Nauk Ukr. 9 (2005), 2024.Google Scholar
[9]Kasyanov, P. O. and Melnik, V. S., ‘Faedo–Galerkin method differential-operator inclusions in Banach spaces with maps of w λ 0-pseudomonotone type’, Nats. Acad. Sci. Ukr., Kiev, Inst. Math., Prepr. 1(Part 2) (2005), 82105.Google Scholar
[10]Lions, J. L., Quelques methodes de resolution des problemes aux limites non lineaires (Dunod Gauthier-Villars, Paris, 1969).Google Scholar
[11]Melnik, V. S., ‘Multivariational inequalities and operational inclusions in Banach spaces with maps of a class (S)+’, Ukr. Mat. Zh. 52 (2000), 15131523.Google Scholar
[12]Melnik, V. S., ‘About critical points of some classes multivalued maps’, Cybernet. Systems Anal. 2 (1997), 8798.Google Scholar
[13]Melnik, V. S., ‘About operational inclusions in Banach spaces with densely defined operators’, Syst. Res. Inform. Technol. 3 (2003), 120126.Google Scholar
[14]Melnik, V. S. and Zgurovsky, M. Z., Nonlinear analysis and control of physical processes and fields (Springer, Berlin, 2004).Google Scholar
[15]Melnik, V. S. and Zgurovsky, M. Z., ‘Ky Fan inequality and operational inclusions in Banach spaces’, Cybernet. Systems Anal. 2 (2002), 7085.Google Scholar
[16]Pshenichniy, B., Convex analysis and extremal problems (Nauka, Moscow, 1980).Google Scholar
[17]Reed, M. and Simon, B., Methods of mathematical physics 1: Functional analysis (Academic Press, New York, 1980).Google Scholar
[18]Rudin, W., Functional analysis (McGraw-Hill, New York, 1973).Google Scholar
[19]Skripnik, I. V., Methods of investigation of nonlinear elliptic boundary problems (Nauka, Moscow, 1990).Google Scholar
[20]Tolstonogov, A. A., ‘About solutions of evolutionary inclusions 1’, Siberian Math. J. 33 (1992), 145162.Google Scholar
[21]Tolstonogov, A. A. and Umanski, J. I., ‘About solutions of evolutionary inclusions 2’, Siberian Math. J. 33 (1992), 163174.Google Scholar
[22]Vainberg, M. M., Variational methods and method of monotone operators (Wiley, New York, 1973).Google Scholar
[23]Vakulenko, A. N. and Melnik, V. S., ‘Solvability and properties of solutions of one class of operator inclusions in Banach spaces’, Naukovi Visti NTUU ‘KPI’ 3 (1999), 105112.Google Scholar
[24]Vakulenko, A. N. and Melnik, V. S., ‘On a class of operator inclusions in Banach spaces’, Dopov. Nats. Akad. Nauk Ukr. 8 (1998), 2025.Google Scholar
[25]Vakulenko, A. N. and Melnik, V. S., ‘On topological method in operator inclusions with densely defined mappings in Banach spaces’, Nonlinear Boundary Value Probl. 10 (2000), 125142.Google Scholar